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Abstract

Wavelet analysis and compression tools are reviewed and different ap-
plications to study MHD and plasma turbulence are presented. We in-
troduce the continuous and the orthogonal wavelet transform and detail
several statistical diagnostics based on the wavelet coefficients. We then
show how to extract coherent structures out of fully developed turbulent
flows using wavelet based denoising. Finally some multiscale numerical
simulation schemes using wavelets are described. Several examples for
analyzing, compressing and computing one, two and three dimensional
turbulent MHD or plasma flows are presented.
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1 Introduction

Turbulence is ubiquitous and plays a critical role for the plasma stability and
confinement properties of fusion devices, e.g., in the tokamak edge region. Tur-
bulence is a regime of fluid, gas and plasma flows characterized by its highly
nonlinear dynamics [3]. It exhibits a chaotic, i.e., unpredictible behavior and ro-
tational motion all along a wide range of dynamically active scales. In contrast
to classical dynamical systems, which are low dimensional and conservative, a
turbulent flow is a dissipative dynamical system, whose behavior is governed by
a very large, even maybe infinite, number of degrees of freedom. Each field, e.g.,
velocity, vorticity, magnetic field or current density, strongly fluctuates around
a mean value and one observes that these fluctuations tend to self-organize into
so-called coherent structures, i.e., vortex tubes in hydrodynamics and vorticty
sheets and current sheets in magnehydrodynamics (MHD). The presence of co-
herent structures results in the strong spatial and temporal flow intermittency,
which is a key feature of turbulence. Intermittency is understood here that the
fluctuations become stronger for decreasing scale and are hence more localized.
The appropriate tool to study intermittency is the wavelet representation due
to its intrinsic multiscale nature. Indeed, it yields a sparse multiscale represen-
tation of intermittent fields since wavelets are well localized functions in both
physical and Fourier space.

The aim of this review is to offer a primer on wavelets for both continu-
ous and orthogonal transforms. We then detail different diagnostics based on
wavelet coefficients to analyze and to compress turbulent flows by extracting co-
herent structures. Examples for experimental data from the tokamak Tore Supra



(Cadarache, France) and numerical simulation data of resistive drift-wave and
MHD turbulence, illustrate the wavelet tools. Wavelet-based density estimation
techniques to improve particle-in-cell numerical schemes are presented, together
with a particle-in-wavelet scheme that we developed for solving the Vlasov—
Poisson equations directly in wavelet space. Coherent Vorticity and Current
sheet Simulation (CVCS), that applies wavelet filtering to the resistive non-
ideal MHD equations, is proposed as a new model for turbulent MHD flows. It
allows to reduce the number of degrees of freedom necessary to compute them,
while capturing the nonlinear dynamics of the flow. This review is based on the
work and publications we have performed within the last 15 years, in collabo-
ration with the CEA-Cadarache and other teams in France, Japan and USA.
Almost all material presented here has already been published in our papers
cited here, and parts have been adapted for this review.

When turbulent flows are statistically stationary (in time) and homogeneous
(in space), as it is classically supposed, one prefers the Fourier space represen-
tation to study the energy spectrum, that is the modulus of the Fourier trans-
form of the velocity auto-correlation. It spreads the information in physical
space among the phases of all Fourier coefficients and thus the energy spectrum
loses all structural information in time and in physical space. This is a ma-
jor drawback of the classical way of analyzing turbulent flows. This is why we
have proposed to use the wavelet representation instead and define new analysis
tools that are able to preserve time and space locality. The same arguments
hold for computing turbulent flows. Indeed, the Fourier representation is well
suited to study linear dynamics, for which the superposition principle holds and
whose generic behavior is, either to persist at a given scale, or to spread to
larger ones. In contrast, the superposition principle does not hold for nonlinear
motions, their archetype being the turbulent regime, which therefore cannot be
decomposed as a sum of independent subsystems that can be separately stud-
ied. Generically, nonlinear dynamics involve a wide range of scales, exciting
smaller and smaller ones, even leading to finite-time singularities, e.g., shocks.
The “art” of predicting the evolution of such nonlinear phenomena consists of
disentangling the active from the passive components: the former should be
deterministically computed, while the latter could either be discarded or their
effect statistically modeled. The wavelet representation allows to analyze the
dynamics in both space and scale, retaining only those degrees of freedom which
are essential to compute the nonlinear flow evolution. Our goal is to perform
a kind of “distillation” and retain only the components which are essential to
predict the nonlinear dynamics.

When studying plasma turbulence one is uneasy about the fact that there
are two different descriptions, depending on which side of the Fourier transform
one looks from.

e On the one hand, looking from the Fourier space representation, one has
a theory which assumes the existence of a nonlinear cascade in an in-
termediate range of wavenumber sets, called the “inertial range” where
energy is conserved and transferred towards large wavenumber, but only
on average, i.e., considering either ensemble or time or space averages.
This implies that a turbulent flow is excited at wavenumbers lower than
those of the inertial range and dissipated at wavenumbers higher. Under
these hypotheses, the theory predicts a power-law behavior for the energy



spectrum in the inertial range.

e On the other hand, if one studies turbulence from the physical space rep-
resentation, there is not yet any universal theory. One relies instead on
empirical observations, from both laboratory and numerical experiments,
which exhibit the formation and persistence of coherent vortices, even at
very high Reynolds numbers. They correspond to the formation of coher-
ent structures, e.g., blobs and current sheets that concentrate most of the
kinetic and magnetic energy.

Moreover, the classical method for modeling turbulent flows, called Large
Eddy Simulation (LES), consists in neglecting high-wavenumber motions and
replacing them by their average, supposing their dynamics to be either linear
or slaved to the low wavenumber motions. Such a method would work if there
exists a clear separation between low and high wavenumbers, that is, a spectral
gap. Actually, there is now strong evidence, from both laboratory and direct
numerical simulation (DNS) experiments, that this is not the case. Conversely,
one observes that turbulent flows are nonlinearly active all along the inertial
range and that coherent structures seem to play an essential dynamical role
there, especially for transport and mixing. One may then ask the following
questions: are coherent structures the elementary building blocks of turbulent
flows, how can we extract them, do their mutual interactions have a universal
character, can we compress turbulent flows and compute their evolution with a
reduced number of degrees of freedom corresponding to coherent blobs?

The outline of this review is the following: first, in section 2 we present
wavelet analysis tools, including a short primer on continuous and orthogonal
wavelets. Statistical tools in wavelet coefficient space are also introduced. Sec-
tion 3 focusses on coherent structure extraction using wavelet based denoising.
Wavelet-based simulation schemes are reviewed in section 4 and section 5 draws
some conclusions.

2 Wavelet analysis

2.1 Wavelets: a short primer
2.1.1 Continuous wavelet transform

The idea of the wavelet transform [18] is to unfold signals (or fields) into both
time (or space) and scale, and possibly directions in dimensions higher than
one. A function ¢ € L?(R) , called the ‘mother wavelet’ is the starting point.
It is well-localized in space x € R and it exhibits a fast decay for |z| tending to
infinity. Moreover it is oscillating, which means that v has at least a vanishing
integral, or better the first m moments of ¢ vanish. Furthermore it is smooth
and thus its Fourier transform (k) exhibits fast decay for wavenumbers |k|
tending to infinity. The mother wavelet then generates a family of wavelets,

buste) = =0 (20 m

by dilatation (or contraction) with the scale parameter a € R and translation
with the location parameter b € R. All wavelets are normalized in the L?-norm,




i.e., |[Yapll2 = 1. The wavelet transform of a function f € L2(R) is defined
by the inner product of f with the analyzing wavelets 1), which yields the
wavelet coefficients

Flab) = (f, ) = / F@)bs () de ()

where * denotes the complex conjugate. The wavelet coefficients measure the
fluctuations of f around scale a and location b. The function f can be recon-
structed without any loss as the inner product of its wavelet coefficients f with
the analyzing wavelets 1q_p

f(@) = (}w / ) / F(a,5) ()

with Cy =[5 [4(k)|2k~Ldk being a constant which depends on the wavelet, ).
Like the Fourier transform the wavelet transform realizes a change of basis from
physical space to wavelet space, which is an isometry. Thus the inner product
((f,g9) = (f,9)) is conserved, which is the Plancherel theorem and Parseval’s

identity holds, i.e.,
1 ~ dadb
Yo = — / / b)]? —— 4
Jrrwpas= o [ [ ifene (4)

which means that energy is conserved. Due to the localization of wavelets in
physical space the behavior of the signal at infinity does not play any role.
Therefore, the wavelet analysis and synthesis can be performed locally, in con-
trast to the Fourier transform where the nonlocal nature of the trigonometric
functions does not allow to perform a local analysis.

Moreover, wavelets constitute building blocks of various function spaces out
of which some can be used to construct orthogonal bases. The main difference
between the continuous and the orthogonal wavelet transforms is that the latter
is non redundant, but preserves the invariance by translation and dilation only
for a subset of wavelet space which corresponds to the dyadic grid A = (j,1),
where scale is sampled by octaves j and space is sampled by locations 277i. The
advantage is that all orthogonal wavelet coefficients are decorrelated. In contrast
this is not the case for the continuous wavelet transform whose coefficients are
redundant and correlated in space and scale. Such a correlation is easy to
visualize by plotting the continuous wavelet coefficients of a white noise, and the
patterns one thus observes are due to the reproducing kernel of the continuous
wavelet transform, which corresponds to the correlation between the analyzing
wavelets themselves.

dadb
GT ) (3)

2.1.2 Orthogonal wavelet transform

A discrete wavelet representation is obtained by sampling dyadically the scale
a and the position b introducing a; = 277 and b;; = ia; with 4,5 € Z. The
resulting discrete wavelets

vilo) =% (ST =2 (2 ) (5)
J



generate orthogonal bases for peculiar wavelets. Figure 1 shows five discrete
wavelets v;; for j = 3,...,7 and their corresponding Fourier transforms, the
modulus |t;;|. Note that the scale 277 is related to the wavenumber k; as

kj = klll 27 ) (6)

where ky = [ k| (k)| dk/ I° t(k)|dk is the centroid wavenumber of the cho-
sen wavelet. In Fig. 1 we observe the duality between physical and spectral
space, namely small scale wavelets are well localized in physical space and badly
localized in spectral space, and vice-versa. Denoting the support of a wavelet
in physical space by Az and the one in spectral space by Ak the Fourier un-
certainty principle requires that the product Az Ak is bounded from below. In
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Figure 1: Wavelet representation. Physical space (left) and spectral space
(right). Note that Az Ak > C is due to the Fourier uncertainty principle.

this case the orthogonal wavelet coefficients of a function f € L?(R) are given
by

fii = (f,¥50) (7)

and the corresponding orthogonal wavelet series reads

f@) = Y (). 8)

JET

The integral in the continuous reconstruction forumla, equ. (3), can thus be
replaced by a discrete sum. In practical applications the infinite sums of the
wavelet series have to be truncated in both scale and position. Limiting the
analysis to the largest accessible scale of the domain 2° = L the scaling function
associated to the wavelet has to be introduced and the wavelet series becomes

fl) =3 Fool) + D fityila) (9)

i€ §>0,i€Z

where ¢ is the scaling function and f = (f, ¢;) the corresponding scaling co-
efficients. The smallest scale 277 is given by the sampling rate of the function
f which determines the number of grid points N = 27. The finite domain size
implies that the number of positions becomes also finite and, choosing L = 1,



we obtain the range i = 0,...,27 — 1 for j = 0,...,J — 1. Figure 2 illustrates
for an orthogonal spline wavelet the discrete scale-space representation for three
different scales (j = 6,7,8) and positions. There exists a fast wavelet transform
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Figure 2: Space-scale representation of an orthogonal spline wavelet at three
different scales and positions, i.e., V6,6, %7,32, %8 108. The modulus of the Fourier
transform of three corresponding wavelets is shown in the insert (top, left).

algorithm which computes the orthogonal wavelet coefficients in O(N) oper-
ations, therefore even faster than the fast Fourier transform whose operation
count is O(N log, N) [22].

As example we show in Fig. 3 the orthogonal wavelet coefficients of an aca-
demic function presenting discontinuities. We observe that wavelet coeflicients
at small scales only have significant values in the vicinity of the discontinuities.
Hence only few coeflicients are needed to represent the function after discarding
the small wavelet coefficients.

Extension to higher dimensions: The orthogonal wavelet representation
can be extended to represent functions in higher space dimensions using tensor
product constructions, see e.g., [6, 22, 32]. Figure 4 illustrates two-dimensional
orthogonal wavelets constructed by tensor products.

The wavelet transform can also be generalized for vector-valued functions
(e.g., velocity or magnetic fields) in d space dimensions by decomposing each
component of the vector into an orthogonal wavelet series. In the following we
consider a generic vector field v = (v(V), v(?) | v®3)) for d = 3 which is sampled at
resolution N = 237, Its orthogonal wavelet series reads

-1

J-1 7
v(x) = ZZ Z Vj i Vi (T), (10)

j=0 u=111,i2,i3=0

using 3D orthogonal wavelets ¢; , ;(¢). The basis functions are constructed
by tensor products of one-dimensional wavelets and scaling functions [6, 22]
which have been periodized since in the applications considered here boundary
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conditions are periodic. The scale index j varies from 0 to J—1, the spatial index
i = (1,142, i3) has 23 values for each j and y, denotes the direction g =1,---,7
of the wavelets. The three Cartesian directions & = (1), 2 23 correspond
to p = 1,2,3, while p = 4,5,6,7 denote the remaining diagonal directions.
The wavelet coefficients measure the fluctuations of v at scale 279 and around
position 2774 for each of the seven possible directions p. The contribution of
the vector field v at the scale 277 and the direction x can be reconstructed by
summation of v; , ;4 ,..:(x) over all positions 4:

291

vj (@) = Z V)i Vjoui (). (11)

1,%2,i3=0

The contribution of v at scale 277 is then obtained by
7
vi(@) = > (@) (12)
p=1

For more details on wavelets, we refer the reader to review articles, e.g., [11, 16,
32] and text books, e.g., [6, 22].

2.2 Wavelet-based statistical diagnostics

The physical representation gives access to both position and direction, the
latter when the space dimension is larger than one. The spectral representation
gives access to both wavenumber and direction, when the space dimension is
larger than one, but the information on position is spread among the phases of all
Fourier coefficients. The wavelet representation combines the advantages of both
representations, while also giving access to scale. For instance if we consider a
three-dimensional vector-valued field, its orthogonal wavelet coefficients of each
of its three components are indexed by three positions, seven directions and
one scale. Thus using the wavelet representation new statistical diagnostics
can be designed by computing moments of coefficients using summation, either
over position, direction or scale, or any combination of them. Second order
moments correspond to energy distributions (e.g., the energy spectrum), while
higher order moments allow to compute skewness and flatness. In the following
we will present scale dependent moments, scale-dependent directional statistics
and scale dependent topological statistics. By topological statistics we mean
the statistics of bilinear quantities, like the scalar product of a vector field and
its curl, e.g., helicity.

In the following, we give a summary of statistical diagnostics based on or-
thogonal wavelet analysis, here applied to a generic vector field following the
lines of [28]. The wavelet representation of vector fields allows to measure scale-
dependent distributions of turbulent flows in different directions and also of the
different flow components. For example, energy, but also its spatial fluctua-
tions, can be quantified at different length scales and in different directions.
Thus, longitudinal or transverse contributions can be distinguished, as well as
contributions in the directions perpendicular or parallel, e.g., to an imposed
magnetic field. To this end, statistical quantities based on the wavelet repre-
sentation are introduced, in order to examine scale-dependent anisotropy and



the corresponding intermittency of MHD turbulence. Intermittency is defined
here as a departure from Gaussianity, reflected by the fact that the flatness
increases when scale decreases, as introduced by Sandborn [30] in the context
of boundary layer flows. For some historical overview on intermittency we refer
to [31]. Different other definitions of intermittency, for example a steepening of
the energy spectrum proposed by Kolmogorov 1962 [19] can be found, e.g., in
[17].

Related techniques to quantify the anisotropy of the flow and its intermit-
tency using structure functions of either tensorial components or applying the
SO3 decompositions, the latter is based on spherical harmonics, have been pro-
posed in [21, 20, 35]. As structure functions can be linked to wavelet decompo-
sitions (see, e.g., [31]), the increments can be seen as wavelet coefficients using
the poor man’s wavelet (i.e., the difference of two delta distributions). The ex-
ponent of the detectable scaling laws is thus limited by the order of the structure
function and the scale selectivity is reduced as the frequency localization of the
poor man’s wavelet is rather bad.

2.2.1 Scale dependent moments

To study the scale-dependent directional statistics we consider the component
v® with £ = 1,2,3 of a generic vector field v. First we define the ¢-th order

moments of the scale-dependent vector v;(x) = (vﬁl),vj(z), v§3)), which is here
either the vector field at scale 277 and direction pu, vji” or the vector field at

scale 277, ’UJ(-Z) ,

M) = ((0{)), (13)

noting that by construction the mean value satisfies <UJ(-£)> = 0. The relation
between these scale-dependent moments and the g-th order structure functions

is given, e.g., in [31]. Here, we consider the second order moment M; [vy)],

which is a scale-dependent mean intensity of vj(e), and the fourth order moment

M,y [v§e)]. These moments are related to the scale-dependent spatial fluctuations
and the flatness factor.

A preferred direction can be defined in many cases of anisotropic turbu-
lence, e.g., for low magnetic Reynolds number turbulence, or rotating turbu-
lence, which have statistical symmetries, here supposed with respect to the xzs-
axis. For the perpendicular components, £ = 1,2, we take the average of these

two components, M[v;] = {M, [vj(»l)] + M, [v§2)]}/2. The superscript L repre-

sents the perpendicular contribution. We hereafter denote UJ(»3) by ’UJH, which is
the parallel contribution.
Using Mo [vy)] and eq. (6), we obtain the wavelet energy spectrum for vj(-e),
which is defined by
¢ 1 ¢
Elo)) = 5 Ml

v; '] = 20k, ) (14)

where Ak; = (kj41 — k;)In2 [23, 1]. The wavelet spectrum E[v](»é)] corresponds
to a smoothed version of the Fourier energy spectrum [11, 23]. Thanks to the

orthogonality of the wavelets with respect to scale and direction, we obtain the

¢ ¢
total energy £ =73, E[UJ( )] =t E[’UJ(;]

10



The spatial variability of the energy spectrum at a given wavenumber k; can
be quantified by its standard deviation:

olf) =5 Alkj ¢M4[v§“1 — (MQ[UJ“)])Q. (15)

The scale-dependent flatness factor, which quantifies flow intermittency at
scale 277, is defined by

0
0] _ Ml (16)

(
J 2
(1214,71)
In [4] it was shown that the flatness is related to the energy spectrum (14) and
the standard deviation (15) by

N CCUAY

Elv;

Flv

Thus the spatial variability of the energy spectrum and the scale-dependent
flatness yield similar information.

2.2.2 Scale-dependent directional statistics

We introduce measures to quantify scale-dependent spatial flow anisotropy and
anisotropic flow intermittency. The anisotropy measure of its scale-dependent
mean energy, F [v](-z)], can be defined, corresponding to the anisotropy measure
based on the Fourier representation of the flow. The anisotropy measure of
its spatial fluctuations, O’[UJ(»Z)], is introduced in analogy with that of E[vy)].
Then, using eq. (17), we show that these quantities provide measures of various
types of anisotropic flow intermittency. Both component-wise anisotropy and
directional anisotropy of the flow are considered in the following.

Component-wise anisotropy: Scale-dependent component-wise anisotropy
of energy and its fluctuation at scale 277 is defined respectively by

CE(kj) = E[Uj”], (18)
co(k;) = i (19)

The measure of the scale-dependent mean energy, cg(k;), corresponds to a
smoothed version of the Fourier representation of ¢(k). The measure c,(k;)
quantifies the component-wise anisotropy of the spatial fluctuations. These
measures have an exact relation with the component-wise flatness factors of

vj(-e), ie., Flvj] and F[UJH} Combining egs. (17), (18) and (19), we obtain
= (et
! cp(k;) Flol] -1

This can be regarded as a scale-dependent measure of component-wise anisotropic
intermittency.

(20)

11



Directional anisotropy: Next, representative measures of directional anisotropy
at scale 277 are introduced. These measures are defined as

Elvt
dé‘(kj) = E{ J|’L}7 (21)
vj,L
db(k;) = 71031 (22)
T el )
ot
R 23
T\ _ U[UJL,B
dy (kj) = ok’ (24)

where L represents the longitudinal direction, i.e., L = p = ¢. The subscript
1 = 3 denotes a transverse direction of the perpendicular components, while T’
corresponds to the other transverse direction of the perpendicular components,
ie, T=p=1for UJ(BL or T =p =2 for vj(l,f For the directional statistics, we
belect here only three principal directions, i.e., u = 1,2 and 3, of the seven pos-
sible directions. The measures d%(k;) and d% (k ) correspond to smoothed ver-
sions of the Fourier representation 26(3)(k3)/{6 1)(k1)+e(2)(k2)} and {e™ (k3)+
2 (k3)}/{eM (k) + e (ky)}, respectively, if we take into account the inter-
pretation of the directional statistics in [4]. These are respectively related
to the following expressions in physical space, which are structure functions:
D@ (rl3) /[{DD (rly) + DA (rly)} and {DD (rlz) + DA (rl3)}/{DD (rly) +
D®(rly)}. The structure function is defined as the spatial average of the low
pass filtered velocity increments, D (r) = ({v© (z 4+ 7) — v (2)}?), and v
consists of contributions of v(¥) to scales larger than or equal to a representative
scale 277, which are obtained by low pass filtering using the 3D scaling function
at scale 2 7. The unit vector of the x,-th Cartesian direction is denoted by le
Using eq. (17) and eqgs. (21)-(24), we obtain the relations:

_ fdE(ky) " _ Flvi] -1
Ay = {dé(kg)} Fll ] -1 25)
T _ dg(kj) F[”gj‘,_s]*l
b= {dgum} Flog] -1 (26)

These quantify the scale-dependent anisotropic intermittency in the transverse
and longitudinal directions. Intermittency can thus be measured, not only in
the plane perpendicular or in the direction parallel to for example an magnetic
field By, but also in the longitudinal or transverse directions. Note that the
departure of these measures from the value one indicates the degree of flow
anisotropy, since these measures are equal to one for isotropic fields.

2.2.3 Scale-dependent topological statistics

Considering the velocity field w and the corresponding vorticity w = V x u the
kinetic helicity, H(x) = u - w, can be defined. The helicity yields a measure of
the geometrical statistics of turbulence. Integrating the helicity over space one

12



obtains the mean helicity H = (u - w). The scale-dependent helicity H; was
introduced in [37] and is defined by

Hj(z) = uj - w;j (27)

It preserves Galilean invariance, though the kinetic helicity itself does not.
The corresponding mean helicity is obtained by summing H; over scale, H =
>_; (Hj) due to the orthogonality of the wavelet decomposition.

The relative helicity -

 Jul |l

h(x)

defines the cosine of the angle between the velocity and the vorticity at each
spatial position. The range of h lies between —1 and +1. The scale dependent
relative helicity can be defined correspondingly

(28)

H;
hj(x) = W (29)

The Euler equations of hydrodynamics conserve the mean kinetic helicity,

while in ideal MHD turbulence the mean cross helicity H ¢ - (u - b) and the

mean magnetic helicity H M (a - by are conserved quantities. Here a is the
vector potential of the magnetic field b. The scale dependent versions of the
relative cross and magnetic helicities have been introduced in [39] and are defined
respectively by

HC
e (x) = —I— (30)
! [u||bj]
with H¢(z) = u - b and
vy~ (
WM () = 31
@)= e )

with H™(x) = a - b. These quantities define the cosine of the angle between
the two vector fields.

2.3 Application to 3D MHD turbulence

In the following we show applications of the above scale-dependent wavelet-
based measures to three-dimensional incompressible magnetohydrodynamic tur-
bulence. To study the anisotropy we analyze flows with uniformly imposed
magnetic field considering the quasistatic approximation at moderate Reynolds
numbers for different interaction parameters [28]. For the geometrical statistics
full MHD turbulence without imposed mean field is analyzed [39]. The flows
are computed by direct numerical simulation with a Fourier pseudo-spectral
method at resolution 5123 and for further details we refer the reader to the
respective publications. The flow structure of the quasistatic MHD turbulence
is illustrated in Fig. 5. Shown are isosurfaces of the modulus of vorticity for
two different interaction parameters V. The interaction parameter characterizes
the intensity of the imposed magnetic field By (here chosen in the z direction)

2
relative to the flow nonlinearity. It is defined by N = Uflf,L, where o is the

electrical conductivity, L the integral length scale, p the density and u’ the rms
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Figure 5: QS-3D-MHD: Modulus of vorticity for quasistatic 3D MHD at Ry =
235, with N =0, (left) and N = 2 (right) computed by DNS, from [28].

velocity. In the case without imposed magnetic field, i.e., N = 0 the flow is
equivalent to isotropic hydrodynamic turbulence and entangled vortex turbes
can be observed in Fig. 5, left. For V = 2 the structures are aligned parallel to
the z direction, i.e., the direction of the imposed magnetic field, and the flow is
thus strongly anisotropic.

The wavelet energy spectra (Fig. 6, left) yield information on the kinetic
energy at scale 277 and the spatial fluctuations are quantified by the standard
deviation spectra (Fig. 6, right). All spectra have been multiplied by k°/3 to
enhance their differences at small scale. We observe that the spectra decay
with increasing normalized wavenumber k;n where 7 is the Kolmogorov length
scale. Furthermore the wavelet spectra (dotted lines) do agree well with the
corresponding Fourier spectra (solid lines). For larger values of N the spectra
Eluj] decay faster for increasing k;n. The standard deviation spectra of uj
also decay more rapidly when IV becomes larger.

The scale-dependent anisotropy measures allow to analyze the anisotropy at
different scales. The scale-dependent component-wise anisotropy cg(k;) shown
in Fig. 7, left, quantifies the anisotropy of the wavelet mean energy spectrum.
As expected we find for N = 0 that cg(k;) =~ 1 as the flow is isotropic. The
departure from the value one corresponds to flow anisotropy, i.e., for values
smaller than one the energy of the parallel component is predominant of that of
the perpendicular component, an obervation which holds for both cases, N =1
and N = 2. Furthermore the anisotropy is persistent at the small scales and
yields smaller values for N = 2. Now we examine the anisotropy in different
directions. Figure 7, right, shows d%, the flow anisotropy of the mean wavelet
spectrum in the longitudinal direction. We find that this measure yields values
larger than one for N = 1 and 2 and values close to one for N = 0. For N # 0
the correlation of the velocity component parallel to the imposed magnetic field
in its longitudinal direction is supposed to be stronger than the correlation of
the perpendicular components. We also see that the scale dependence gets weak
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Figure 6: QS-3D-MHD: Wavelet mean energy spectra (left) k?/SEl(kj) together
with the Fourier energy spectra (solid lines). Wavelet standard deviation spec-
tra (right) k;’/ BUJ‘(kj). All quantites are shown for the perpendicular velocity

components. The inset (left) shows the corresponding forcing Fourier spectra
kS/3E; (k). From [28].
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Figure 7: QS-3D-MHD: Component-wise anisotropy measure cg(k;) (left) and
directional anisotropy measure in the longitudinal direction d%(k;). From [28].

The scale-dependent flatness of the perpendicular velocity F [u]l] and of the

parallel velocity F [uy], shown in Fig. 8, left, quantify the intermittency of the
different flow components. In all cases we find that the flatness does indeed
increase for decreasing scale. At small scales, k;n > 1 we also see that the

flatness is larger for larger values of N. The inset shows that F [uy] behaves
similarily.

The component-wise anisotropy of the intermittency at each scale can be
quantified with A€ (k;), see Fig. 8, right. Again we find that for N = 0 values
close to one are found, as expected due to the isotropy of the flow. For N =1
and 2 the component-wise anisotropic intermittency A (k;) has values larger
than one for k;n7 > 0.1, which means that the perpendicular velocity becomes
more intermittent than the parallel velocity at small scales. For N = 2 this
becomes even more pronounced.
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Figure 8: QS-3D-MHD: Scale-dependent flatness of the perpendicular velocity
F jL with in the inset the corresponding flatness for the parallel velocity (left).
Anisotropic measure of intermittency A(k;) (right). From [28].

To illustrate the scale-dependent geometric statistics we consider homoge-
neous magnetohydrodynamic turbulence at unit Prandtl number without mean
magnetic field. The flow has been computed by direct numerical simulation
at resolution 5123 with random forcing and for further details we refer to [39].
Figure 9 shows the PDFs of the relative scale-dependent cross and magnetic
helicity, hjc and h;‘/[ . Figure 9 (left) exhibits two peaks at h]C = 41 which
corresponds to a pronounced scale-dependent dynamic alignment. The peaks
even become larger for smaller scales and thus the probability of alignement
(or anti-alignement) of the velocity and the magnetic field increases. Figure 9
(right) illustrates that the distribution of the scale-dependent magnetic helicity
becomes more symmetric at small scales. The inset shows that the total rela-
tive magnetic helicity is strongly skewed with a peak at +1, which is due to the
presence of substantical mean magnetic helicity.
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Figure 9: 3D-MHD: Scale-dependent PDFs of the relative helicities. Cross
helicity hJC (left) and magnetic helicity h}" (right). The insets show the PDFs
of the corresponding total relative helicities From [39].
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3 Extraction of coherent structures using wavelets

In this section we illustrate the extraction of coherent structures using an al-
gorithm which is based on wavelet denoising. We first describe it for one-
dimensional scalar-valued signals and illustrate its performance on an academic
test signal. We then generalize the algorithm to higher dimensions and to vector-
valued fields. Finally, different applications to experimental and numerical data
are shown:

e a scalar-valued signal varying in time measured by a Langmuir probe in
the scrape-off layer of the tokamak Tore Supra (Cadarache, France),

e a two-dimensional academic example of the synthetic emissivity of a radi-
ating toric shell with additive noise,

e experimental movies obtained by a fast camera implemented in Tore Supra,

e two-dimensional vorticity fields computed for resistive drift-wave turbu-
lence (Hasegawa-Wakatani model) using a pseudo-spectral method,

e three-dimensional vorticity and current density fields computed for resis-
tive MHD turbulence (incompressible MHD equations) using a pseudo-
spectral method.

3.1 Extraction algorithm
3.1.1 Principle

We propose a wavelet-based method to extract coherent structures that emerge
out of turbulent flows, both in fluids (e.g., vortices, shocklets) and plasmas
(e.g., bursts, blobs). The goal is to study their role regarding the transport and
mixing properties of flows in the turbulent regime.

For this we use the wavelet representation, that keeps track of both time and
scale, instead of the Fourier representation, that keeps track of frequency only.
Since there is not yet an universal definition of the coherent structures encoun-
tered in turbulent flows, we start from a minimal and consensual statement, that
everyone hopefully could agree with: ‘coherent structures are not noise’. Using
this apophatic method we propose the following definition: ’coherent structures
correspond to what remains after denoising’.

The mathematical definition of noise states that a signal is a noise if it cannot
be compressed in any functional basis. As a result the shortest description of
a noise is the noise itself. Note that experimental physicists often call ‘noise’
what is actually experimental noise generated by the measure apparatus (e.g.,
parasite waves), but the mathematical definition above does not consider this
as noise stricto sensu.

This new way of defining coherent structures allows to process signals and
fields, but also their cuts or projections (e.g., a probe located at one point
provides a one dimensional cut of a four dimensional space-time field). Indeed,
the usual algorithms used to extract coherent structures cannot work for cuts
or projections, because they require a template of the structures to extract (one
would need to take into account how the probe sees all possible translations and
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distortions of the coherent structures). The strength of our algorithm is that it
treats fields and projections the same way.

Since we assume that coherent structures are what remains after denoising,
we need a model, not for the structures themselves, but for the noise. As a
first guess, we choose the simplest model and suppose the noise to be additive,
Gaussian and white, i.e., uncorrelated. We then project the turbulent signal, or
turbulent field, into wavelet space and only retain the coefficients whose modu-
lus is larger than a given threshold. Donoho and Johnstone [8] have proposed a
threshold value that depends on the variance of the Gaussian noise to eliminate.
Since in the case of turbulence this variance is not known a priori, we designed a
recursive method to estimate it from the variance of the weakest wavelet coeffi-
cients, i.e., those whose modulus is below the threshold value [2]. After applying
our algorithm we obtain two orthogonal fields: the coherent field retaining all
coherent structures and the incoherent field corresponding to the noise. We
then check a posteriori that the latter is indeed noise-like (i.e., spread in phys-
ical space), Gaussian and uncorrelated (i.e., also spread in Fourier space), and
thus confirm the hypotheses we have chosen for the noise.

3.1.2 Wavelet denoising

We consider a one-dimensional signal s(t) sampled on N points that we would
like to denoise. For this we suppose the noise to be additive, Gaussian and
white. We project s(t) onto an orthogonal wavelet basis and threshold the
obtained wavelet coefficients s;;. There are actually two cases to compute the
threshold value:

o If we know a priori the noise’s variance o2, the optimal threshold value is
given by
€= (202In N)/2. (32)

Donoho and Johnstone [8] have proven that such a wavelet thresholding
is optimal to denoise signals in presence of additive Gaussian white noise,
because it minimizes the maximal L2-error (between the denoised signal
and the noise-free signal) for functions with inhomogeneous regularity,
such as the intermittent signals encountered in turbulence.

e If the variance of the noise is not known a priori, which is the case for
most practical applications, one should use the recursive algorithm we have
designed [12, 2]|. It is based on the observation that, given a threshold e,
the variance of the noise estimated using Parseval’s theorem

1 -~
on = N > Erls (33)

(J9)EAY |51l <en

yields a new variance o2 ; and hence a threshold €41 closer to the optimal
threshold € than €,. In [2] we studied the mathematical properties of this
algorithm and proved its convergence for signals having sufficiently sparse
representation in wavelet space, such as intermittent signals.

Using the appropriate threshold we then separate the wavelet coefficients s;;
into two classes: the coherent coefficients §g whose modulus is larger than € and

the remaining incoherent coeflicients §ZI] Finally, the coherent component s (t)
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is reconstructed in physical space using the inverse wavelet transform, while the
incoherent component is obtained as s’(t) = s(t) — s (t), since s“(t) and s’ (t)
are orthogonal.

3.1.3 Extraction algorithm for one-dimensional signals
The recursive extraction algorithm can be summarized as follows:

Initialization

e given the signal s(¢) of duration T, sampled on an equidistant grid ¢; =
iT/N for i =0,N — 1, with N =27,

e set n = 0 and perform a wavelet decomposition, i.e., apply the Fast
Wavelet Transform [22] to s to obtain the wavelet coefficients §;; for
(j7 Z) € AJa

e compute the variance 02 of s as a rough estimate of the variance of
the incoherent signal s’ and compute the corresponding threshold ¢y =

(2In NJ%)I/Q, where 0 = + 2o (i)’ 15542,

e set the number of coefficients considered as noise to Ny = N, i.e., to the
total number of wavelet coefficients.

Main loop
Repeat

e set N2 = N; and count the number of wavelet coefficients smaller than
€n, which yields a new value for Ny,

e compute the new variance o2, from the wavelet coefficiens smaller than

: 2 _ 1 =T |2
€ny 0.6, Opi1 = 2o(jiyea 155, where

~T _ { gji fOI‘ |gji| S €n

5ji 0 else, (34)

and the new threshold €,1 = (2In No2, |)/2,
esetn=n+1

until (Ny==N¢'d).
Final step
e reconstruct the coherent signal s from the coefficients fsg’;
verse Fast Wavelet Transform, where

using the in-

S for |55 > €
gﬁ - { OJ else| 8 (35)

e finally, compute pointwise the incoherent signal s’ (¢;) = s(t;) — s© (t;) for
i=0,..,N—1.
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End

Note that the decomposition yields s(t) = s (¢) + s’(t) and orthogonality
implies that energy is split into 02 = 02 + o2, since (s¢, sT) = 0.

The Fast Wavelet Transform (FWT), proposed by Mallat [22], requires
(2M N) multiplications for its computation, where M is the length of the discrete
filter defining the orthogonal wavelet used. Hence, the extraction algorithm we
propose is computed in (2nM N) operations, with a number of iterations n very
small, typically less than log, N. Recall that the operation count for the Fast
Fourier Transform (FFT) is proportional to N log, N operations.

This algorithm defines a sequence of estimated thresholds (ey),,cy and the
corresponding sequence of estimated variances (aﬁ)n N’ The convergence of
these sequences within a finite number of iterations has been demonstrated in
[2] applying a fixed point type argument to the iteration function

1/2

2In N -
Lo (ent1) = | — > [Filen) : (36)
(4,5)ENT

The algorithm thus stops after n iterations when Z; n(€,) = €pt1.

Furthermore, we have shown that the convergence rate of the recursive algo-
rithm depends on the signal to noise ratio (SNR = 10log,o(0?/0%)), since the
smaller the SNR, i.e., the stronger the noise, the faster the convergence. More-
over, if the algorithm is applied to a Gaussian white noise only, it converges
in one iteration and removes the noise (in statistical mean). If it is applied to
a signal without noise, the signal is fully preserved. Finally, we have proven
that the algorithm is idempotent, i.e., if we apply it several times, the noise
is eliminated the first time, and the coherent signal is no more modified in the
subsequent applications, as it would have been the case for a Gaussian filter.
As a consequence, this algorithm yields a nonlinear projector [2]. Note that in
all applications Coiflet 12 wavelets [6] are used, if not otherwise stated.

3.1.4 Application to an academic test signal

To illustrate the properties of the recursive algorithm we apply it to a one-
dimensional noisy test signal s(t) (Fig. 10, middle). This signal has been con-
structed by superposing a Gaussian white noise w(t), with zero mean and a
variance o2 = 25, to an academic signal a(t) (Fig. 10, top). This corresponds
to a signal to noise ratio SN R = 10log;(02/02) = 11 dB. The chosen academic
signal a(t) is a piecewise polynomial function which presents several disconti-
nuities, either in the function or in its derivatives. The number of samples is
N =213 =8192.

We apply the recursive extraction algorithm to the noisy test signal s(t) and
obtain as estimation for the variance 25.6. The resulting coherent signal s (t)
is shown in Fig. 10, bottom. We observe that s¢(¢) yields indeed a denoised
version of the noisy signal s(t) which is very close to original academic signal
a(t). Fig. 10 (bottom) shows that the coherent signal retains all discontinuities
and spikes present in the original signal a(t), without smoothing them as it
would have been the case with standard denoising methods, e.g., with low pass
Fourier filtering. Nevertheless, we observe slight overshoots in the vicinity of
the discontinuities, although they remain much more local than the classical
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Figure 10: Denoising of a piecewise regular signal using iterative wavelet thresh-
olding. Top: original academic signal a(t). Middle: Noisy signal s(¢) with a SNR
= 11 dB. Bottom: Denoised signal s (¢) with a SNR = 28 dB.
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Gibbs phenomena, and could easily be removed using the translation invariant
wavelet transform [22].

3.1.5 Extension of the algorithm to higher dimensional scalar and
vector-valued fields

The extraction algorithm was described in section 3.1.3 for one-dimensional
scalar-valued signals s(t) varying in time. First, it can be extended to higher-
dimensional scalar fields s(x) varying in space * € RY where d is the space
dimension. To this end the extraction algorithm only requires that the one-
dimensional wavelets are replaced by their equivalent d-dimensional wavelets
using tensor product constructions, see, e.g., [6, 22, 32].

Second, the extraction algorithm can also be extended to vector-valued fields
v = (U(l), ...,v(d)) where each component v/, ¢ = 1,...,d is a scalar valued field.
The extraction algorithm is then applied to each component of the vector field.
For thresholding the wavelet coefficients we consider the vector v; ,, ; in eq. (10).
Assuming statistical isotropy of the noise, the modulus of the wavelet coef-
ficient vector is computed. The coherent contribution is then reconstructed
from those coefficients whose modulus is larger than the threshold defined as
€ = (2/do?1In N)'/? where d is the dimensionality of the vector field, o the vari-
ance of the noise and IV the total number of grid points. The iterative algorithm
in section 3.1.3 can then be applied in a straightforward way.

To extract coherent structures out of turbulent flows we consider the vor-
ticity field, which is decomposed in wavelet space. Applying the extraction
algorithm then yields two orthogonal components, the coherent and incoher-
ent vorticity fields. Subsequently the corresponding induced velocity fields can
be reconstructed by applying the Biot—Savart kernel, which is the inverse curl
operator. For MHD turbulence, we consider in addition the current density
and we likewise split it into two components, the coherent and incoherent cur-
rent density fields. Using Biot—Savart’s kernel we reconstruct the coherent and
incoherent magnetic fields.

Note that the employed wavelet bases do not a priori constitute divergence-
free bases. Thus the resulting coherent and incoherent vector fields are not
necessarily divergence free. However, we checked that the departure from in-
compressibility only occurs in the dissipative range and remains negligible [38].
Another solution would be to use directly div-free wavelets, but they are much
more cumbersome to implement [7].

3.2 Application to 1D experimental signals from tokamaks

In [15] we presented a new method to extract coherent bursts from turbulent
signals. Ton density plasma fluctuations were measured by a fast reciprocating
Langmuir probe in the scrape-off layer of the tokamak Tore Supra (Cadarache,
France), for a schematic view we refer to Fig. 11. The resulting turbulent signal
is shown in Fig. 12 (top). To extract the coherent burst the wavelet represen-
tation is used which keeps track of both time and scale and thus preserves the
temporal structure of the analyzed signal, in contrast to the Fourier represen-
tation which scrambles it among the phases of all Fourier coefficients. Apply-
ing the extraction algorithm described in section 3.1.3 the turbulent signal in
Fig. 12 (top) is decomposed into coherent and incoherent components (Fig. 12,
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bottom). Both signals are orthogonal to each other and their properties can
thus be studied independently. This procedure disentangles the coherent bursts,
which contain most of the density variance, are intermittent and correlated with
non-Gaussian statistics, from the incoherent background fluctuations, which are
much weaker, non-intermittent, noise-like and almost decorrelated with quasi-
Gaussian statistics.

[=: Zone de mesure de la densité

Sonde

Région de lighes
de champ fermées

coté A coté B

Figure 11: Left: Position of the reciprocating Langmuir probe in the scrape-off
layer of the tokamak Tore Supra in Cadarache. Right: Schematic top view of
the probe.

The corresponding PDFs are shown in Fig. 13 which confirm that the in-
coherent part is indeed Gaussian like, while the total and coherent signal have
similar skewed PDFs with algebraic heavy tails for positive signal values. Di-
agnostics based on the wavelet representation were also introduced in [15]
which allow to compare the statistical properties of the original signals with
their coherent and incoherent components. The wavelet spectra in comparison
with classical Fourier spectra (obtained via modified periodograms) in Fig. 14
(left) confirm that the total and coherent signals have almost the same scale
energy distribution with a power law behavior close to —5/3. Furthermore the
wavelet spectra agree well with the Fourier spectra. The incoherent signal yields
an energy equipartition for more than two magnitudes, which corresponds to
decorelation in physical space. To quantify the intermittency we plot in Fig. 14
(right) the scale dependent flatness of the different signals which shows that
the coherent contribution extracted from the total signal has the largest values
at small scale (i.e., high frequency) and is thus the most intermittent. In [15]
we conjectured that the coherent bursts are responsible for turbulent transport,
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Figure 12: Signal s(t) of duration 8.192 ms, corresponding to the saturation
current fluctuations measured at 1 MHz in the scrape-off layer of the tokamak
Tore Supra (Cadarache, France). Top: total signal s, bottom left coherent part
sc, and bottom right incoherent part s;. From [15].

Figure 13: Probability density function p(s) estimated using histograms with 50
bins. PDF of the total signal s (green dashed line), of the coherent component
sc (red solid line) and of the incoherent component sy (blue dotted line, together
with a Gaussian fit with variance o? (black dotted line). From [15].
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whereas the remaining incoherent fluctuations only contribute to turbulent dif-
fusion. This is confirmed by the resulting energy flux of the total, coherent and
incoherent parts given in Fig. 15. Note that cross correlation between coherent

1 2
10 10° x 1.25 kHz. -1 0 1 2
® [kHz| 10 10 © IkHz] 10 10° x 1.25 kHz

Figure 14: Left: wavelet spectra E (wj;) (lines with symbols) and modified peri-
odograms F(w) (lines) of the total signal s (green and +) , coherent signal s¢
(red and ¢) and incoherent signal s; (blue and o). Right: corresponding scale
dependent flatness F vs frequency wj. The horizontal dotted line F (w;) =3
corresponds to the flatness of a Gaussian process. From [15].

and incoherent contributions of the electric potential and the saturation current
are not shown.

3.3 Application to 2D experimental movies from toka-
maks

3.3.1 Tomographic reconstruction using wavelet-vaguelette decom-
position

Images acquired by cameras installed in tokamaks are difficult to interpret be-
cause the three-dimensional structure of the plasma is flattened in a non-trivial
way. One of the current limitations of such optical diagnostics is that the re-
ceived flux cannot be directly related to the volumic emissivity of the plasma,
because the photons collected by each pixel on the camera sensor have been
emitted all along a corresponding ray, rather than out of a single point in space.
This requires a tomographic reconstruction, which relates the three-dimensional
radiation to the two-dimensional image, that is possible because the dominant
structures in tokamak edge turbulence happen to be field-aligned filaments,
commonly known as blobs. They have a higher density than their surroundings,
and their structure varies more slowly along magnetic field lines than in their
orthogonal directions.

Mathematically the tomographic reconstruction corresponds to an inverse
problem which has a formal solution under the assumed symmetry, but is ill-
posed in the presence of noise. Taking advantage of the slow variation of the
fluctuations along magnetic field lines in tokamaks, this inverse problem can be
modelled by a helical Abel transform, which is a Volterra integral operator of
the first kind. In [26] we proposed a tomographic inversion technique, based on
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Figure 15: Energy flux: total (green), coherent (red) and incoherent (blue). The
split is made using complex valued wavelets.

a wavelet-vaguelette decomposition and coupled with wavelet denoising to ex-
tract coherent structures, that allows to detect individual blobs on the projected
movie and to analyse their behaviour. The wavelet-vaguelette decomposition
(WVD) was introduced by Tchamitchian [36] and used by Donoho [9] to solve
inverse problems in the presence of localized structures. Tomographic inversion
using the wavelet-vaguelette decomposition is as an alternative to SVD (Singu-
lar Value Decomposition). SVD and WVD regularize the problem by damping
the modes of the inverse transform to prevent amplification of the noise, i.e.,
modes below a given threshold are eliminated. For WVD the nonlinear it-
erative thresholding procedure (see section 3.1.3) is applied to the vaguelette
coefficients. Here Coiflets with two vanishing moments are used [6]. However,
in contrast to SVD, WVD takes in addition advantage of the spatial localization
of coherent structures present in the plasma.

The technicalities of WVD are described in detail in [26], in the following
we only explain the principle. The helical Abel transform related the plasma
light emissivity S (a scalar-valued field) to the integral of the volume emissivity
received by the camera I = K.S, where K is a compact continuous operator.
The reconstruction of the plasma light emissivity S from I is an inverse problem
which becomes very difficult when S is corrupted by noise, since computing K ~—*
is an ill-posed problem which amplifies the noise. The vaguelettes are operator
adapted wavelets and a biorthogonal set of basis functions is obtained from
the wavelet bases ¥ by computing K and K* 4y, where K*~' denotes
the adjoint inverse operator [36]. Note that vaguelettes inherit the localization
features of wavelets but may loose the translation and scale invariance, and thus
the fast wavelet transform cannot be applied anymore.
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3.3.2 Application to an academic example

To illustrate the method we first consider an academic test case with an given
emissivity map S, having a uniform radiating shell at constant value one and
zero elsewhere. A two-dimensional cut in the poloidal plane is shown in Fig. 16,
left. Applying the helical Abel transform we generate the corresponding syn-
thetic image I = KS (Fig. 16, middle). Then we add a Gaussian white noise
with standard deviation 0.5, which yields the synthetic noisy image (Fig. 16,
right).

0.2 04 06 0.8
r

Figure 16: Denoising WVD academic test case with a uniform radiating shell.
Left: source emission intensity S in the poloidal plane. Middle: corresponding
noiseless image I = KS in the image plane. Right: noisy image obtained by
adding Gaussian white noise with variance 0.5. From [26].

Applying the WVD reconstrution to the synthetic noisy image (Fig. 16,
right) gives a denoised emissivity map, a poloidal cut is shown in Fig. 17, left.
We observe that the main features are preserved, i.e., the constant emissivity
shell is well recovered, besides some spurious oscillations close to discontinuities.
The corresponding denoised image I; = K Sy (Fig. 17, right) illustrates that the
noise has been successfully removed. A comparison with the standard SVD
technique in [26] (not shown here) illustrates the superiority of the wavelet-
vaguelette technique.

3.3.3 Application to fast camera data from tokamaks

Now we present an application to an experimental movie acquired during the
Tore Supra discharge TS42967, where the plasma was fully detached and stabi-
lized over several seconds using a feedback control. The movie has been obtained
using a fast camera recording at 40 kHz. Moreover, the time average of the whole
movie was subtracted from each frame, which helps us to decrease the effect of
reflection on the chamber wall. The algorithm is then applied directly to the
fluctuations in the signal instead of the full signal. The experimental conditions
can be found in [26]. One frame of the movie is shown in Fig. 18, left and
used as input for the WVD reconstruction algorithm. The resulting emissivity
map in the poloidal plane, in Fig. 18, middle, shows the presence of localized
blobs, which propagate counterclockwise as observed in the movies, not shown
here. Thus their propagation velocity can be determined. The corresponding
denoised movie frame I; (Fig. 18, right) is obtained by applying the operator K
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Figure 17: Denoising WVD academic test case. WVD inversion results. Left:
reconstructed poloidal emissivity map Sg. Right: denoised image Iy = K Sy.
From [26].

to the inverted emissivity map Sy. We observe that the noise has been removed
and the local features such as blobs and fronts have been extracted.
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Figure 18: WVD-inversion of a snapshot from a movie obtained from Tore
Supra, discharge TS42967. Left: noisy frame used as input for the WVD al-
gorithm. Middle: reconstructed emissivity map obtained as a result of WVD.
Right: denoised frame obtained by applying the operator K to the reconstructed
emissivity map. From [26].

3.4 Application to 2D simulations of resistive drift-wave
turbulence

The coherent vortex extraction method, a wavelet technique (see section 3.1.3)
is applied in [5] to direct numerical simulations of resistive drift-wave turbulence
in magnetized plasma modelled by the Hasegawa-Wakatani system. The aim
is to identify and to retain only the active degrees of freedom, responsible for
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the transport. Visualizations of the vorticity field for two regimes, the quasi-
hydrodynamic case and the quasi-adiabatic case, corresponding respectively to
low and high collisionality of the plasma, are given in Fig. 19. The statistical

Figure 19: Snapshots of the vorticity field for the quasi-hydrodynamic case (left)
and for the quasi-adiabatic case (right). Abscissa and ordinate correspond to
the radial and poloidal position, respectively. The white rectangles indicate the
selected dipoles. From [5].

properties of the total, coherent and incoherent vorticity fields are assessed in
Fig. 20 by plotting the vorticity PDFs and the Fourier enstrophy spectra for
the two cases.

In [5] it is furthermore shown that the radial density flux is carried by
these coherent modes. In the quasi-hydrodynamic regime, coherent vortices
exhibit depletion of the polarization-drift nonlinearity as shown in the scatter
plot of vorticity against the electrostatic potential in Fig. 21. Moreover vorticity
strongly dominates strain, in contrast to the quasiadiabatic regime. Details can
be found in [5].

3.5 Application to 3D simulations of resistive MHD tur-
bulence

A method for extracting coherent vorticity sheets and current sheets out of
three-dimensional homogeneous magnetohydrodynamic (MHD) turbulence is
proposed in [38], which is based on the orthogonal wavelet decomposition of
the vorticity and current density fields. Thresholding the wavelet coefficients
allows both fields to be split into coherent and incoherent contributions. The
fields to be analyzed are obtained by direct numerical simulation (DNS) of forced
incompressible MHD turbulence without mean magnetic field, using a classical
Fourier spectral method at a resolution of 5123. Coherent vorticity sheets and
current sheets are extracted from the DNS data at a given time instant using the
extraction algorithm described in section 3.1.3. A visualization of isosurfaces of
vorticity and current density of the total, coherent and incoherent fields is shown
in Fig. 22. It is found that the coherent vorticity and current density preserve
both the vorticity sheets and the current sheets present in the total fields while
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Figure 20: Top: PDFs of the vorticity. Bottom: Fourier spectrum of the enstro-
phy versus wavenumber. Left: quasi-hydrodynamic case. Right: quasi-adiabatic
case. Dashed line: total field, solid line: coherent part, dotted line: incoher-
ent part. Note that the coherent contribution (solid) superposes the total field
(dashed), which is thus hidden under the solid line in all four figures. The
straight lines indicating power laws are plotted for reference. From [5].
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Figure 21: Scatter plot of vorticity against electrostatic potential for the coher-
ent part (top) and incoherent part (bottom). Left: quasi-hydrodynamic case;
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retaining only a few percent of the degrees of freedom. The incoherent vorticity
and current density are shown to be structureless and of mainly dissipative na-
ture. The spectral distributions in Fig. 24 of kinetic and magnetic energies of
the coherent fields only differ in the dissipative range, while the corresponding
incoherent fields exhibit quasi-equipartition of energy. The probability distribu-
tion functions (PDF's) of total and coherent fields, for both vorticity and current
density, in Fig. 23 coincide almost perfectly, while the incoherent vorticity and
current density fields have strongly reduced variances. The energy flux shown in
Fig. 25 confirms that the nonlinear dynamics is fully captured by the coherent
fields only. The scale-dependent flatness of the velocity and the magnetic field
in Fig. 26 illustrate that the total and coherent fields have indeed similar scale
dependent high order moments and reflect strong intermittency characterized
by the strong increase of the flatness for decreasing scale. The flatness values
of the incoherent contributions, of both the velocity and the magnetic field are
are much smaller and do not increase significanlty for decreasing scale, i.e., they
are not intermittent.

4 Wavelet-based simulation schemes

In the following two wavelet-based methods for solving kinetic plasma equations
are presented: an application of nonlinear wavelet denoising to improve the con-
vergence of particle-in-cell schemes (PIC) and a particle-in-wavelet scheme for
solving the Vlasov-Poisson equation directly in wavelet space. We also present
the Coherent Vorticity and Current sheet Simulation (CVCS) method which
extends the Coherent Vorticity Simulation (CVS) [12, 13] developed for the
Navier—Stokes equations to the resistive non-ideal MHD equations. Numerical
examples illustrate the properties and the efficiency of the different methods.

4.1 Improving particle-in-cell (PIC) schemes by wavelet
denoising

For given computational resources, the accuracy of plasma simulations using
particles is mainly constrained by the noise due to limited statistical sampling
in the reconstruction of the particle distribution function.

The difference between the distribution function reconstructed from a sim-
ulation using N, particles and the exact distribution function gives rise to a
discretization error generically known as particle noise due to its random-like
character. Understanding and reducing this error is a complex problem of im-
portance in the validation and verification of particle codes. One straightforward
way to reduce particle noise is by increasing the number of computational parti-
cles. However, the unfavorable scaling of the error with the number of particles,
x 1/ \/E, limits this approach in practical applications. This has motivated
the development of various noise reduction techniques, see, e.g., [24].

In [24] we proposed a wavelet-based method for noise reduction in the recon-
struction of particle distribution functions from particle simulation data, called
wavelet-based density estimation (WBDE). The method was originally intro-
duced in [10] in the context of statistics to estimate probability densities given
a finite number of independent measurements. WBDE, as used in [24], is based
on a truncation of the wavelet representation of the Dirac delta function associ-
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Figure 22: Isosurfaces of vorticity (left) and current density (right) of the total
(top), coherent (middle) and incoherent contributions (bottom). From [38].
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Figure 23: PDFs of the ¢-th component of the velocity (a), vorticity (b), mag-
netic field (¢) and current density (d) for the total, coherent and incoherent
contributions. From [38].

T
a Total
( ) k_3/2 Coherent - -
2 Incoherent --
10°
—
~
S 10t F
=
108
108 F
10-10 1 1 1

0.01

0.1
kg

k—3}2

Total
Coherent -

Incoherent --

0.01

0.1
kni

Figure 24: Kinetic (a) and magnetic (b) energy spectra of the total, coherent and
incoherent fields. The wavenumber is normalized with the Iroshnikov-Kraichnan

scale. From [38].

34



1.2 T T T
i —-o-eoe-
(e[}
=~ T
=
= °8r
=
:37 0.6 -
=
0.4 -
oz |
0 -
_0_2 1 1 1
0.01 0.1 1
ki
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ated with each particle. The method yields almost optimal results for functions
with unknown local smoothness without compromising computational efficiency,
assuming that the particles coordinates are statistically independent. It can be
viewed as a natural extension of the finite size particles (FSP) approach, with
the advantage of estimating more accurately distribution functions that have
localized sharp features. The proposed method preserves the moments of the
particle distribution function to a good level of accuracy, has no constraints
on the dimensionality of the system, does not require an a priori selection of a
global smoothing scale, and is able to adapt locally to the smoothness of the
density based on the given discrete particle data. Indeed, the projection space is
determined from the data itself, which allows for a refined representation around
sharp features, and could make the method more precise than PIC for a given
computational cost. Moreover, the computational cost of the denoising stage is
of the same order as one time step of a FSP simulation.

The underlying idea of WBDE is to expand the sampled particle distribution
function, represented by a histogram, into an orthogonal wavelet basis using
the fast wavelet transform. We define the empirical density associated to the
particles positions z,, for n =1, ..., N, where N, is the number of particles,

=

1 p

P(z) = N, 6(z —wn) (37)

1

and where ¢ is the Dirac measure. We then project p’(x) onto an orthogonal
wavelet basis retaining only scales j such that L < j < J where the scales L
and J denote the largest and smallest retained scales, respectively [10]. The
remaining wavelet coefficients are then thresholded retaining only those whose
modulus is larger than the scale-dependent threshold K+/j/N,, where K is a
constant which depends on the regularity of the solution [10]. Finally the de-
noised particle density is obtained by applying an inverse fast wavelet transform.
In [24] Daubechies wavelets with 6 vanishing moments were used.

In [24] we treated three cases in order to test how the efficiency of the denois-
ing algorithm depends on the level of collisionality of the plasma. A strongly
collisional, weakly collisional and collisionless regimes were considered. For the
strongly collisional regime we computed particle data of force-free collisional re-
laxation involving energy and pinch-angle scattering. The collisionless regime is
studied using PIC-data corresponding to bump-on-tail and two-stream instabil-
ities in the Vlasov—Poisson system. The third case of a weakly collisional regime
is illustrated here using guiding-center particle data of a magnetically confined
plasma in toroidal geometry. The data was generated with the code DELTA5D.
Figure 27 shows contour plots of the histogram (top row) and the reconstructed
densities using WBDE for increasing number of particles. It can be seen that
the WBDE results in efficiently denoised densities and that the error has been
reduced by a factor two with respect to the raw histograms as shown in Fig. 28.

4.2 Particle-in-wavelets scheme (PIW)

In [25] we proposed a new numerical scheme, called particle-in-wavelets, for the
Vlasov—Poisson equations describing the evolution of the particle distribution
function f in collisionless plasma, and assessed its efficiency in the simplest case
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Figure 27: Contour plots of estimates of §f for the collisional guiding center
transport particle data: histogram method (top row) and WBDE method (bot-
tom row). The left, center and right columns correspond to N, = 32103 (left),
N, = 128 - 10® (middle) and N, = 1024 - 10% (right), respectively. The plots
show 17 isolines equally spaced within the interval [0.5,0.5]. From [24].
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Figure 28: RMS error estimate for collisional guiding center transport particle
data according to the histogram, the POD, and the wavelet methods. The
reference density is computed with N, = 1024 - 10°. From [24].
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of one spatial dimension. In non-dimensional form the equations read

Ouf + 00z f + 0200, f 0 (38)
Opzd+1— 27r/ flzy,v,t)dv = 0 (39)
R

where ¢ is electric potential. The particle distribution function f is discretized
using tracer particles, and the charge distribution is reconstructed using wavelet-
based density estimation (WBDE), discussed in the previous section. The lat-
ter consists in projecting the Delta distributions corresponding to the parti-
cles onto a finite dimensional linear space spanned by a family of wavelets,
which is chosen adaptively. A wavelet-Galerkin Poisson solver is used to com-
pute the electric potential once the wavelet coefficients of the electron den-
sity p(x,t) = [ f(x,v,t)dv have been obtained by WBDE. The properties
of wavelets are exploited for diagonal preconditioning of the linear system in
wavelet space, which is solved by an iterative method, here conjugated gradi-
ents. Similar to classical PIC codes the interpolation method is compatible with
the charge assignment scheme. Once the electric field E(x,t) = —0y¢(x,t) has
been interpolated at the particle positions the characteristic trajectories, defined
by 2'(t) = v(t) and v'(t) = —E(x(t),v(t),t) can be advanced in time using the
Verlet integrator.
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Figure 29: Comparisons between PIW and PIC for the two-stream instability
test case. Relative L? error of the electric field at ¢t = 30, as a function of the
number of particles (left) and the corresponding computing time (right). Note
that L-PIW is a variant of PIW where only linear filtering has been applied.
From [25].

To demonstrate the validity of the PIW scheme, numerical computations
of Landau damping and of the two-stream instability have been performed in
[25]. The stability and accuracy have been assessed with respect to reference
computations obtained with a precise semi-Lagrangian scheme [34]. We showed
that the precision is improved roughly by a factor three compared to a classical
PIC scheme, for a given number of particles [25], as illustrated in Fig. 29 for the
two-stream instability. We observe that PIW remains uniformely more precise
for any number of particles thanks to its adaptive properties (Fig. 29, left).
The total CPU time measured in seconds scaled for the PIW code inversely

38



proportional to the number of particles, while for PIC and L-PIW the scaling
changes when the number of particles is too low for a given spatial resolution.
However, note that the actual CPU time may depend on the implementation,
since the PIC code is written in Fortran, while the PIW code is written in C4+,
although the same computer was used for both codes.

4.3 Coherent Vorticity and Current sheet Simulation (CVCS)

Direct numerical simulation (DNS) of turbulent flow has a large computational
cost due to the huge number of degrees of freedom to be taken into account.
The required spatial resolution thus becomes prohibitive, e.g., scaling as Re/*
for hydrodynamics using Kolmogorov like arguments [29]. The CVS method,
introduced in [12, 13], proposes to reduce the computational cost by taking only
into account the degrees of freedom that are nonlinearly active. To this end,
the coherent structure extraction method (presented in section 3) is combined
with a deterministic integration of the Navier—Stokes equations. At each time
step the CVE is applied to retain only the coherent degrees of freedom, typically
a few percent of the coefficients. Then, a set of neighbor coefficients in space
and scale, called ‘safety zone’, is added to account for the advection of coherent
vortices and the generation of small scales due to their interaction. Afterwards
the Navier—Stokes equations are advanced in time using this reduced set of a
degrees of freedom. Subsequently, the CVE is applied to reduce the number
of degrees of freedom and the procedure is repeated for the next time step.
A graphical illustration, in wavelet coefficient space, of the degrees of freedom
retained at a given time step, is given in Fig. 30. This procedure allows to track
the flow evolution in space and scale selecting a reduced number of degrees
of freedom in a dynamically adaptive way. With respect to simulations on a
regular grid, much less grid points are used in CVS.

In [40] we extended CVS to compute 3D incompressible magnetohydrody-
namic (MHD) turbulent flow and developed a simulation method called coherent
vorticity and current sheet simulation (CVCS). The idea is to track the time
evolution of both coherent vorticity and coherent current density, i.e., current
sheets. Both the vorticity and current density fields are, respectively, decom-
posed at each time step into two orthogonal components, corresponding to the
coherent and incoherent contribution, using an orthogonal wavelet representa-
tion. Each of the coherent fields is reconstructed from the wavelet coefficients
whose modulus is larger than a threshold, while their incoherent counterparts
are obtained from the remaining coefficients. The two threshold values depend
on the instantaneous kinetic and magnetic enstrophies. The induced coherent
velocity and magnetic fields are computed from the coherent vorticity and cur-
rent density, respectively, using the Biot—Savart kernel. In order to compute
the flow evolution, one should retain not only the coherent wavelet coefficients
but also their neighbors in wavelet space, the safety zone. A flowchart sum-
marizing the principle of CVCS is shown in Fig. 31 and the adaption strategy
in orthogonal wavelet coefficient space in Fig. 32.

In [40] CVCS was performed for 3D forced incompressible homogeneous
MHD turbulence without mean magnetic field, for a magnetic Prandtl num-
ber equal to unity. The Navier—Stokes equations coupled with the induction
equation were solved with a pseudospectral method using 256> grid points and
integrated in time with a Runge-Kutta scheme. Different adaption strategies
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Figure 30: Illustration of the safety zone in wavelet coefficient space used in
CVS. The degrees of freedom retained by CVE are drawn in red, the adjacent
coefficients of the safety zone are drawn in green, while the coefficients in blue
correspond to the inactive degrees of freedom which are not computed. The
interface 7, defined in space and scale, separates the region dominated by non-
linear interaction (red) from the region dominated by linear dissipation (blue).
The horizontal green line corresponds to the Kolmogorov dissipation scale (n)
is defined by the statistical mean (either ensemble or space average).
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Figure 31: Flowchart describing the principle of CVCS. The superscripts n and
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and its inverse. Operators performed in wavelet coefficient space are framed by
the dashed rectangle. From [40].

Figure 32: Adaption strategy in wavelet coefficient space used in CVCS: retained
wavelet coefficients (blue), added wavelet coefficients to ensure a graded tree
(red) and added wavelet coefficients corresponding to the safety zone (green).
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to select the optimal saftey zone for CVCS have been studied. We tested the
influence of the safety zone and of the threshold, as defined in section 3.1.3, by
considering three cases:

e CV(CSO0 with safety zone but without iterating the threshold ¢,
e CVCSI with safety zone but with iterating the threshold once €1,
e CV(CS2 without safety zone but without iterating the threshold e,

details can be found in [40]. The quality of CVCS was then assessed by com-
paring the results with a direct numerical simulation. It is found that CVCS
with the safety zone well preserves the statistical predictability of the turbulent
flow with a reduced number of degrees of freedom. CVCS was also compared
with a Fourier truncated simulation using a spectral cutoff filter, where the
number of retained Fourier modes is similar to the number of the wavelet coef-
ficients retained by CVCSO0. Figure 33 shows the percentage of retained wavelet
coefficients for CVCS (with three different adaption strategies) in comparison
to Fourier filtering (FT0) with a fixed cut-off wavenumber. The percentage of
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20 |
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t/T
Figure 33: Evolution of the percentage C' of retained wavelet coefficients for

CVCS with three different adaption strategies in comparison with Fourier fil-
tering (FTO) with a fixed cut-off wavenumber. From [40].

retained kinetic energy, magnetic energy, kinetic enstrophy and magnetic enstro-
phy for the three different CVCS strategies in comparison with Fourier filtering
(FTO) is plotted in Fig. 34.

Probability density functions of vorticity and current density, normalized by
the corresponding standard deviation, in Fig. 35 show that CVCS0 and CVCS1
capture well the high order statistics of the flow, while in FT0 and in CVCS2
the tails of the PDFs are reduced with respect to the DNS results. The energy
spectra of kinetic and magnetic energy in Fig. 36 confirm that CVCSO and
CVCS1 reproduce perfectly the DNS results in the inertial range, where all
nonlinear acticity takes place, and only differs in the dissipative range.

The results thus show that the wavelet representation is more suitable than
the Fourier representation, especially concerning the probability density func-
tions of vorticity and current density and that only about 13% of the degrees
of freedom (CVCS0) compared to DNS are sufficient to represent the nonlinear
dynamics of the flow. A visualization comparing both the vorticity and current
density field for DNS and CVCSO is presented in Fig. 37.
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Figure 35: PDFs of the ¢-th component of vorticity (a) and current density (b)
normalized by the corresponding standard deviation. From [40].
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Figure 36: Kinetic (a) and magnetic energy spectra (b). The wavenumber is
normalized with the Iroshnikov-Kraichnan scale. From [40].

Figure 37: Visualization of isosurfaces of modulus of vorticity (top) and modulus
of current density (bottom) for DNS (left) and CVCS0 (right). From [40].
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5 Conclusion

We reviewed different wavelet techniques and their applications to MHD and
plasma turbulence. Continuous and orthogonal wavelet transforms have been
presented and wavelet-based statistical tools for turbulence have been described.
The wavelet-based coherent structure extraction algorithm has been detailed
and different applications to experimental and numerical data in one, two and
three dimensions have been shown. Numerical simulation schemes using wavelets
in the context of kinetic plasma equations have been described. Wavelet denois-
ing allows to accelerate the convergence of classical PIC schemes and particle-in
wavelet scheme solves the Vlasov-Poisson equation directly and efficiently in
wavelet space. For the fluid equations, the resistive non-ideal MHD equations,
the coherent vorticity and current sheet methods has been proposed. Numerous
examples illustrate the properties and the insights of the wavelet-based approach
in the context of plasma physics.

Acknowledgements

MF and KS are grateful to Sadri Benkadda for inviting them to give review
lectures at the ITER International School 2014 “High performance computing
in fusion science” held in Aix-en-Provence, France. The manuscript is based
on MF’s lecture there, entitled ‘Wavelet transforms and their applications for
ITER’, given on August 26th, 2014. The authors are also indebted to Wouter
Bos, Romain Nguyen van yen, Naoya Okamoto, Katsunori Yoshimatsu with
whom the wavelet techniques have been developed together and published in
numerous research papers from which the material of this review has been taken.
This work was supported by the French Research Federation for Fusion Studies
carried out within the framework of the European Fusion Development Agree-
ment (EFDA).

References

[1] P.S. Addison. The Illustrated Wavelet Transform Handbook: Introductory
Theory and Applications in Science, Engineering, Medicine and Finance.
Taylor & Francis, London, 2002.

[2] A. Azzalini, M. Farge and K. Schneider. Nonlinear wavelet thresholding : a
recursive method to determine the optimal threshold value. Appl. Comput.
Harm. Anal., 18(2), 177-185, 2005.

[3] D. Biskamp. Nonlinear magnetohydrodynamics. Cambridge University
Press, 1997.

[4] W.J.T. Bos, L. Liechtenstein and K. Schneider. Small scale intermittency
in anisotropic turbulence, Phys. Rev. E, 76, 046310 (2007).

[5] W.J.T. Bos, S. Futatani, S. Benkadda, M. Farge and K. Schneider. The
role of coherent vorticity for turbulent transport in resistive drift-wave tur-
bulence. Phys. Plasmas, 15, 072305, 2008.

[6] 1. Daubechies. Ten lectures on wavelets. SITAM, Philiadelphia, 1992.

45



[7]

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

E. Deriaz, M. Farge and K. Schneider. Craya decomposition using com-
pactly supported biorthogonal wavelets. Appl. Comput. Harm. Anal., 28,
267-284, 2010.

D. Donoho and I. Johnstone. Ideal spatial adaptation via wavelet shrinkage.
Biometrika, 81, 425-455 (1994).

D. Donoho. Nonlinear solution of linear inverse problems by wavelet-
vaguelette decomposition. Appl. Comput. Harm. Anal., 2(2), 101-127,
1995.

D.L. Donoho, I.M. Johnstone, G. Keryacharian and D. Picard. Density
estimation by wavelet thresholding. Ann. Statist., 24(2), 508-539, 1996.

M. Farge. Wavelet transforms and their applications to turbulence. Ann.
Rev. of Fluid Mech., 24, 395-457 (1992).

M. Farge, K. Schneider and N. Kevlahan. Non-Gaussianity and coherent
vortex simulation for two-dimensional turbulence using adaptive orthonor-
mal wavelet basis. Phys. Fluids, 11, 2187-2201 (1999).

M. Farge and K. Schneider. Coherent vortex simulation (CVS), a semi-
deterministic turbulence model using wavelets. Flow, Turb. Combust., 6,
393-426, 2001.

M. Farge, K. Schneider, G. Pellegrino, A.A. Wray and R.S. Rogallo. Co-
herent vortex extraction in three-dimensional homogeneous isotropic turbu-
lence: Comparison between CVS and POD decompositions. Phys. Fluids,
15 (10), 2886-2896

M. Farge, K. Schneider and P. Devynck. Extraction of coherent events
in turbulent edge plasma using orthogonal wavelets. Phys. Plasmas, 13,
042304, 2006.

M. Farge and K. Schneider. Wavelets: applications to turbulence. En-
cyclopedia of Mathematical Physics (Eds. J.-P. Frangoise, G. Naber and
T.S. Tsun), Elsevier, 408-419, 2006.

U. Frisch. Turbulence. Cambridge University Press, Cambridge, England,
1995.

A. Grossmann and J. Morlet. Decomposition of Hardy functions into square
integrable wavelets of constant shape. STAM J. Math. Anal., 15(4), 723~
736, 1984.

A. N. Kolmogorov. A refinement of previous hypotheses concerning the
local structure of turbulence in a viscous incompressible fluid at high
Reynolds number. J. Fluid Mech., 13, 82-85, 1962.

S. Kurien and K. R. Sreenivasan. Anisotropic scaling contributions to high-
order structure functions in high-Reynolds-number turbulence. Phys. Rev.
E, 62, 2206, 2000.

S. Kurien and K.R. Sreenivasan. In New Trends in Turbulence, edited by M.
Lesieur, A. Yaglom, and F. David. EDP Sciences, Les Ulis, France, 2001.

46



[22] S. Mallat. A wavelet tour of signal processing. Academic Press (1998).

[23] C. Meneveau. Analysis of turbulence in the orthonormal wavelet represen-
tation. J. Fluid Mech., 232, 469, 1991.

[24] R. Nguyen van yen, D. del Castilo-Negrete, K. Schneider, M. Farge and
G.Y. Chen. Wavelet—based density estimation for noise reduction in plasma
simulation using particles. J. Comput. Phys., 229(8), 2821-2839, 2010.

[25] R. Nguyen van yen, E. Sonnendriicker, K. Schneider and M. Farge. Particle-
in-wavelets scheme for the 1D Vlasov—Poisson equations. ESAIM: Proceed-
ings, 32, 134-148, 2011.

[26] R. Nguyen van yen, N. Fedorczak, F. Brochard, G. Bonhomme, K. Schnei-
der, M. Farge and P. Monier-Garbet. Tomographic reconstruction of toka-
mak plasma light emission from single using wavelet-vaguelette decompo-
sition. Nucl. Fusion, 52, 013005, 2012.

[27] N. Okamoto, K. Yoshimatsu, K. Schneider and M. Farge. Directional
and scale-dependent statistics of quasi-static magnetohydrodynamic tur-
bulence. ESAIM: Proceedings, 32, 95-102, 2011.

[28] N. Okamoto, K. Yoshimatsu, K. Schneider and M. Farge. Small-scale
anisotropic intermittency in magnetohydrodynamic turbulence at low mag-
netic Reynolds number. Phys. Rev. E, 89, 033013, 2014.

[29] S. Pope. Turbulent flows. Cambridge University Press, 2000.

[30] V. A. Sandborn. Measurements of intermittency of turbulent motion in a
boundary layer. J. Fluid Mech., 6, 221-240, 1959.

[31] K. Schneider, M. Farge and N. Kevlahan. Spatial intermittency in two-
dimensional turbulence: a wavelet approach. Woods Hole Mathematics,
Perspectives in Mathematics and Physics, Vol. 34 (Eds. N. Tongring and
R.C. Penner), World Scientific, 302-328, 2004.

[32] K. Schneider and M. Farge. Wavelets: mathematical theory. Encyclopedia
of Mathematical Physics (Eds. J.-P. Frangoise, G. Naber and T.S. Tsun),
Elsevier, 426-437, 2006.

[33] K. Schneider and O. Vasilyev. Wavelet methods in computational fluid
dynamics. Annu. Rev. Fluid Mech., 42, 473-503, 2010.

[34] E. Sonnendriicker, J. Roche, P. Bertrand and A. Ghizzo. The semi-
Lagrangian method for the numerical resolution of the Vlasov equation.
J. Comp. Phys., 149, 201220, 1999.

[35] L. Sorriso-Valvo, V. Carbone, R. Bruno and P. Veltri. Persistence of small-
scale anisotropy of magnetic turbulence as observed in the solar wind. Fu-
rophys. Lett., 75(5), 832, 2006.

[36] P. Tchamitchian. Biorthogonalité et théorie des opérateurs. Rev. Math.
Iberoamerica, 3, 163-189, 1987.

47



[37]

[38]

[39]

K. Yoshimatsu, N. Okamoto, K. Schneider, Y. Kaneda and M. Farge. In-
termittency and scale-dependent statistics in fully developed turbulence.
Phys. Rev. E, 79, 026303, 2009.

K. Yoshimatsu, Y. Kondo, K. Schneider, N. Okamoto, H. Hagiwara and
M. Farge. Wavelet based coherent vorticity sheet and current sheet ex-
traction from three-dimensional homogeneous magnetohydrodynamic tur-
bulence. Phys. Plasmas, 16, 082306, 2009.

K. Yoshimatsu, K. Schneider, N. Okamoto, Y. Kawahara and M. Farge.
Intermittency and geometrical statistics of three-dimensional homogeneous
magnetohydrodynamic turbulence: A wavelet viewpoint. Phys. Plasmas,
18, 092304, 2011.

K. Yoshimatsu, N. Okamoto, Y. Kawahara, K. Schneider and M. Farge. Co-
herent vorticity and current density simulation of three-dimensional mag-
netohydrodynamic turbulence using orthogonal wavelets. Geophysical and
Astrophysical Fluid Dynamics, 107(1-2), 73-92, 2013.

48



