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1750: Euler’s problem

On 16 May 1748 Euler, president of the Prussian
Academy of Sciences, read the problem he proposed for
the Prize of Mathematics to be given in 1750 :

'Deduce from new principles, as simple as possible,
a theory to explain the resistance
exerted on a body moving in a fluid,
as a function of the body's velocity, shape and mass,
and of the fluid’s density and compressibility'.

Six mathematicians, including d’Alembert, sent a manuscript,
but Euler was not satisfied with them and decided
to postpone the prize to 1752.
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1752: d’Alembert’s paradox

D’Alembert was upset and took back his manuscript of 1749,
translated it into French and published it in 1752.
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It seems to me that the theory, developed in all
possible rigor, gives, at least in several cases,

a strictly vanishing resistance, a singular paradox
which | leave to future geometers to elucidate.’
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1904: Prandtl’s boundary layer theory

« Prandtl (1904) predicted that the thickness of the boundary layer
in contact with a solid body (left) scales as Re 72,

the inverse square root of the Reynolds number Re,

« But Prandtl’s theory does not apply for separated flow regions
where the boundary layer detaches from the solid body (right).

Attached b.l. Detached b.l.

Prandtl, Uber Fliissigkeitsbewegung bei sehr kleiner Reibung,
Proceedings of the 3@ ICM in Heidelberg, 484-491, 1904 @ ®




What is the inviscid limit of Navier-Stokes?

Navier-Stokes equations with
no-slip boundary conditions:

{V-u=0
\u|('9Q =0, 11(0,') =V

Re = VLv! the Reynolds number

Same initial
conditions

Euler equations with

slip boundary conditions:
(Ju+(u-Viu=—Vp
§V-u=0 — uw(,Xx) g
\u|8Q'n207 U(O,-):V

for

u, (1,x) gY79

e — 400

?

for

v=0(
e =400
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Laboratory experiments

Vassilicos, Ann. Rev. Fluid Mech., 47, 2015
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Numerical experiments

Normalized energy dissipation > ?
as v=>0, or Re > oo
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Both laboratory and numerical experiments
show that the dissipation rate of turbulent flows
becomes independent of the fluid viscosity for large Re
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1984: Kato’s theorem

Navier-Stokes solution converges towards the Euler solution,
if and only if, energy dissipation vanishes

T
AE,.(0,T)=Re™" [ dt [ dx[Vu(t,x)] —0,
0 Q v—0

and, if and only if, this happens in a boundary layer of
thickness inversely proportional to the Reynolds number Re

This requires using
smaller resolution

l to compute high

~1
dx e 2

Reynolds flows

than predicted by
Prandtl's theory

oxr x Re™ !




Dissipation of energy in the inviscid limit

@ In an incompressible flow (p = 1)

2
%:% "?:—u/uﬂ:—zyz

o To dissipate energy, vorticity needs to be created and/or amplified, in

such a way that Z ~ 71,

Possible vorticity distributions:
w ~ 1712 over O(1) area,
w ~ v~! over O(v) area.

with E energy, Z enstrophy,

v fluid kinematic viscosity,
w flow vorticity.
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2D Flow inside a cylinder

Node 16320.ro0t.0.1, frame 000001
-6.92 0.0748 7.07

Resolution
N=81922

Navier-
Stokes

equations

with volume
penalization

integrated
using Fourier

K. Schneider
and M. F,
Phys. Rev. Lett.,
95, 244502 (2005)
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Dipole crashing onto a plane walli

DNS
Resolution
N=81922




Dipole crashing onto a wall in 2D

: Navier-Stokes equations
RGSOIUUO” . ) i Nguyen van yen, M. F.
N=163842 with volume penalization i) Selfreislan

integrated using Fourier PRL, 106(18), 2011

-2.50e+03 2.50e+03 4.99e+03




Energy dissipation

Energy dissipated
when the dipole crashes onto the wall
at increasing Reynolds numbers
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Production of dissipative structures

Nguyen van yen, M. F.
and Schneider,
PRL, 106(18), 2011
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Production of dissipative structures

energy dissipation rate
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Comparison Navier-Stokes and Euler-Prandtl

Initial vorticity field: vortex quadrupole
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Prandtl equation coupled to Euler

Ansatz for the vorticity field as Re — oo:
w(z,y) = wg(z,y) + v ?wp(z,v=?y)+ wr(z,y)
Prandtl’s variable : yp,=y / v1/2

Oiwp + V-(quP) = Gspwp

CUP(ZIZ',yp,O) =0

vp(z,yp,t) —/ dyp/ dypwp(z,yp,t)
Oypwp(x,0,t) = —0pe(x,0,1),

where P E is the pressure calculated from WE
which is the vorticity given by Euler equation
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Comparison Navier-Stokes and Euler-Prandtl

Navier-Stokes solver

- Fourier in x and compact finite differences of 5th order
with non-uniform grid in vy.

- Third order Runge-Kutta in t.

- Periodic in x and no-slip boundary conditions in y.
Euler solver

- Fourier with hyperdissipation in x and .

- Third order Runge-Kutta in t.

- Mirror-symmetry around y=0 to impose boundary conditions.
Prandtl solver

- Second order finite differences in x and y.

- Second order semi-implicit Runge-Kutta in t.

- Neumann boundary condition at y=0 when inverting.
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Computational grid

Before t=54 After t=54 when B.L. detachs
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Zoom of the boundary layer in Prandtl’s units
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Euler and Prandti Navier-Stokes
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Prandtl’'s solution
no more exists

after t= 55.8
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Prandtl’s solution
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after t= 55.8
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Prandtl’s solution
Nno more exists
after t= 55.8
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Prandtl’s solution
Nno more exists
after t= 55.8
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Prandtl’s singularity

Prandtl equation has well-known finite time singularity

o |Oxwi1| and uy,y blows up,
e wi remains bounded.

8)”0-3 | |

m— NX = 512

71| ——Nx = 1024

m—— NX = 2048

e |-

This is observed Nx = 4096
in our computations .|
as expected, 54
3_
2_
for t = tp ~ 55.8 j
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Prandtl solution’s blow-up at t,=55.8

maximum vortidty

According to Kato's theorem, and since w; remains bounded

: : L2 .
uniformly until tp, we expect that u, —— Ug uniformly on [0, tp].
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Vorticity along the wall at t=50 < t,

30

Euler-Prandtl solution
compared to
Navier-Stokes solution
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Vorticity along the wall at t=54 < t,
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Vorticity along the wall at t=55 < t,
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Vorticity along the wall at t=55.3 < t;
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Spectrum of the boundary vorticity

oy t=54 _ t=55.3 <t,= 55.8
wavepacket
\ \. bump for N-S

k-3/2 for
Prandtl

boundary enstrophy spectrum
boundary enstrophy spectrum
=

10 { —e—Re = 7692
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10°% { —e—Re = 7692
—n—Re = 15384
—A—Re = 30769

\
\
\
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10° 10’ 10° 10* 10° 10’ 10° 10° 10*
wavenumber wavenumber

The Prandtl’s solution behaves as k32 for large k, consistent
with the build-up of a jump singularity of vorticity along the wall,
while Navier-Stokes develops a bump which spreads in k with Re.

(©MOM




Vorticity along the wall at t=57 > t;

vorticity

30 ; . :
Production of a wavepacket
20l when a boundary layer detaches
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Vorticity along the wall at t=57.5 > t;

Higher the Re,
more oscillations
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Scaling from

Re=7692 to 123075

Vorticity max Enstrophy
10° - , 10° :
- — - Prandtl {t = 53) - = - Prandtl (t = 53)
——Navier—Stokes (t = 53) t> tg 1 —e—Navier-Stokes (t = 53) t>t
| —a— Navier-Stokes (t = 569) _____;r-R"e —a— Navier-Stokes (t = 56.9) D
,g . Re' E Ra P
£ 10' e Re'? “o——1 £1¢° ]
= i S Sl am
SN t <t e
~Re12 T <t
| ---""-- ~Re1/2
10" - ' : ? : : '
7692 15384 30769 61538 12307 107692 15384 30769 61538 123075
Reynolds number Reynolds number

We observe Prandtl’s scaling in Re'? before t,~ 55.8
and Kato’s scaling in Re after.
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What about the von Karman log law?

In turbulent boundary layers the mean velocity profile satisfies

U- yU-
(Uly) = - — log( - )
y=0>

dU
UT:\V<d—y

This shows that the bulk velocity and /.- have the same
scaling with Re. This can be seen as a statistical signature

of a boundary layer thickness Re-!, which is consistent
in some sense with the existence of a Kato layer.

the so called ‘log law’, where

IS the friction velocity.




Conclusions

« The Prandtl solution becomes singular at t;when BL detaches.

 The Navier-Stokes solution converges uniformly to
the Euler solution before BL detaches,

and ceases to converge after BL detaches.

« The detached BL has spatial scales as fine as Re™', whic are
produced in different directions and not only parallel to the wall,
while the attached BL is parallel to the wall and scales as Re"~,

* The maximal vorticity of Navier-Stokes solution does not appear
at the same location of the Prandtl singularity. This contradicts
the picture of BL detachment seen as a local process coinciding

with Prandtl singularity.
CHoH




Conclusions

* The velocity gradient du/dy at the wall scales like Re,
which can be seen as the statistical signature of the
existence of a boundary layer of thickness Re in the
neighborhood of the wall.

* Hence, the log-law, which is obtained from experimental
results, is consistent with the existence of a Kato layer.
This connection can be made in a phenomenological

way without invoking the Kolmogorov scale and cascade.

* Qur results may help in investigating rigorous foundations
to the phenomenological theory of von Karman.
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Open questions

Numerical results suggest that a new asymptotic description
of the flow beyond the breakdown of the Prandtl regime is possible.

Studying it might help to answer the following questions:

- Would Navier-Stokes solution looses smoothness after t;?
-Would it converges to a weak singular dissipative solution of

Euler's equation analog to dissipative shocks in Burgers solution?
- How can such a weak solution be approximated numerically?

This might lead to a new resolution of d’Alembert’s paradox

in terms of the production of weak singular dissipative structures
due to the interaction of fully-developed turbulent flows with walls.
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