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On 16 May 1748 Euler, president of the Prussian 
Academy of Sciences, read the problem he proposed for 

the Prize of Mathematics to be given in 1750 : 

1750: Euler’s problem

    Six mathematicians, including d’Alembert, sent a manuscript,  
but Euler was not satisfied with them and decided  

to postpone the prize to 1752. 

'Deduce from new principles, as simple as possible,  
a theory to explain the resistance  

exerted on a body moving in a fluid,  
as a function of the body's velocity, shape and mass,  

and of the fluid’s density and compressibility'. 

Grimberg, D’Alembert et les équations 
aux dérivées partielles en hydrodynamique, 

Thèse de Doctorat, Université de Paris VII, 1998
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D’Alembert was upset and took back his manuscript of 1749, 

translated it into French and published it in 1752. 

1752: d’Alembert’s paradox

1749 1752 

’It seems to me that the theory, developed in all 
possible rigor, gives, at least in several cases, 

a strictly vanishing resistance, a singular paradox 
which I leave to future geometers to elucidate.’ 

 https://gallica.bnf.fr/ark:/12148/bpt6k206036b
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1904: Prandtl’s boundary layer theory 
•  Prandtl (1904) predicted that the thickness of the boundary layer 

in contact with a solid body (left) scales as Re-1/2, 
     the inverse square root of the Reynolds number Re,  
•  But Prandtl’s theory does not apply for separated flow regions 

where the boundary layer detaches from the solid body (right). 

Attached b.l. Detached b.l. 

 
 
 

Prandtl, Über Flüssigkeitsbewegung bei sehr kleiner Reibung, 
Proceedings of the 3rd ICM in Heidelberg, 484-491, 1904



What is the inviscid limit of Navier-Stokes? 
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Vassilicos, Ann. Rev. Fluid Mech., 47, 2015
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Laboratory experiments    
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Numerical experiments   

Kaneda et al., 2003
Phys. Fluids, 12, 21-24
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    Both laboratory and  numerical experiments 
show that the dissipation rate  of turbulent flows 

   becomes independent of the fluid viscosity for large Re 
       
   

    



1984: Kato’s theorem 
Navier-Stokes solution converges towards the Euler solution, 

if and only if, energy dissipation vanishes 

and, if and only if, this happens in a boundary layer of 
thickness inversely proportional to the Reynolds number Re 

⌫ ! 0

This requires using 
smaller resolution 
to compute high 
Reynolds flows 

than predicted by 
Prandtl’s theory 

Kato, 1984, Remarks on zero 
viscosity limit for non stationary 

Navier-Stokes flows with boundary, 
MSRI Berkeley



Dissipation of energy in the inviscid limit 

   with  E energy,  Z enstrophy, 
 

 
fluid kinematic viscosity, 
        flow vorticity. 

 

Possible vorticity distributions: 
 
 
 



Resolution 
N=81922 

2D Flow inside a cylinder  

Navier-
Stokes 

equations 
with volume 
penalization 
integrated 

using Fourier  

K. Schneider  
and M. F., 

Phys. Rev. Lett., 
95, 244502 (2005) 



Dipole crashing onto a plane wall 
 
 
 
 
 

DNS 
Resolution 
N=81922 



Resolution 
N=163842 

Dipole crashing onto a wall in 2D 

t=0.4 t=0.3 t=0.5 

Nguyen van yen, M. F. 
and Schneider,

PRL, 106(18), 2011

Navier-Stokes equations 
with volume penalization 
integrated using Fourier  



Energy dissipation 
      

Energy dissipated  
when the dipole crashes onto the wall  

at increasing Reynolds numbers  

ΔE 

Re 
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t=0-0.35 
t=0.35-0.5 

Early time : 

Later time: 



Nguyen van yen, M. F.
and Schneider,

PRL, 106(18), 2011

Production of dissipative structures 

Detached vortex 

Attached vorticity layer 
Re=1000 

Kato 
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Re-1/2 

Energy 
dissipation 
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versus Re 

Energy 
Dissipation 
versus Re 

Re=8000 



R. Nguyen van yen, M. F.  
and K. Schneider, 

PRL, 106(18) 

Production of dissipative structures 

Detached vortex 
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Initial vorticity field: vortex quadrupole 

min max 

Comparison Navier-Stokes and Euler-Prandtl 

No-slip wall 

No-slip wall 



Prandtl equation coupled to Euler  

where        is the pressure calculated from 
  which is the vorticity given by Euler equation    

pE !E

. 

Prandtl’s variable : yP = y / ν1/2 



Comparison Navier-Stokes and Euler-Prandtl 

Navier-Stokes solver 
- Fourier in x and compact finite differences of 5th order  
with non-uniform grid in y. 
- Third order Runge-Kutta in t. 
- Periodic in x and no-slip boundary conditions in y. 
Euler solver 
- Fourier with hyperdissipation in x and y. 
- Third order Runge-Kutta in t. 
- Mirror-symmetry around y=0 to impose  boundary conditions. 
Prandtl solver 
- Second order finite differences in x and y. 
- Second order semi-implicit Runge-Kutta in t. 
- Neumann boundary condition at y=0 when inverting.  



Computational grid 

B.L. 

Before t=54 After t=54 when B.L. detachs 
from the wall 



Euler and Prandtl  Navier-Stokes 

Zoom of the boundary layer in Prandtl’s units 

y  

x  

yP = y / ν1/2 

x  



Euler and Prandtl  Navier-Stokes 



Euler and Prandtl  Navier-Stokes 



Euler and Prandtl  Navier-Stokes 



Euler and Prandtl  Navier-Stokes 



Euler and Prandtl  Navier-Stokes 



Navier-Stokes Euler   

Prandtl’s solution 
  no more exists 

after t= 55.8 
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Euler   Navier-Stokes 
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Euler   Navier-Stokes 

Prandtl’s solution 
  no more exists 

after t= 55.8 



Prandtl’s singularity 

L. L. van Dommelen 
and S. F. Shen., 1980
J. Comp. Phys., 38(2)

tD= 55.8 



Prandtl solution’s blow-up at tD=55.8 

Evolution of vorticity max Evolution of analyticity strip 

Blow-up at  
tD= 55.8 

tD= 55.8 



Vorticity along the wall at t=50 < tD 
 

Euler-Prandtl solution 
          compared to 
Navier-Stokes solution    

ω=0 Euler-Prandtl  -----  
Navier-Stokes    ___ 



Vorticity along the wall at t=54 < tD 
 

 Built-in of a recirculation bubble ω=0 

Euler-Prandtl  -----  
Navier-Stokes    ___ 



Vorticity along the wall at t=55 < tD 
 

ω=0 

Euler-Prandtl   -----  
Navier-Stokes    ___ 



Vorticity along the wall at t=55.3 < tD 
 

ω=0 



The Prandtl’s solution behaves as k-3/2  for large k, consistent  
with the build-up of a jump singularity of vorticity along the wall, 

while Navier-Stokes develops a bump which spreads in k with Re. 

Spectrum of the boundary vorticity 
t=55.3 <tD= 55.8 t=54 

wavepacket  
bump for N-S 

 
  

k-3/2 for  
Prandtl 



Vorticity along the wall at t=57 > tD 

 Production of a wavepacket 
when a boundary layer detaches 

    Higher the Re, 
more oscillations 

ω=0 

Navier-Stokes    ___ 



Vorticity along the wall at t=57.5 > tD 
 

ω=0 

    Higher the Re, 
more oscillations 



Scaling  from Re=7692 to 123075 

Vorticity max Enstrophy 

We observe Prandtl’s scaling in Re1/2 before tD~ 55.8 
                 and Kato’s scaling in Re after. 

t > tD 
~Re  

t  < tD 
~Re1/2  

t > tD 
~Re  

t  < tD 
~Re1/2 



What about the von Karman log law? 

In turbulent boundary layers the mean velocity profile satisfies 
 
 

 
the so called ‘log law’, where 
 
 
is the friction velocity. 

This shows that the bulk velocity and        have the same  
scaling with Re. This can be seen as a statistical signature  
of a boundary layer thickness Re-1, which is consistent  
in some sense with the  existence of a Kato layer. 

U⌧

T. von Karman, Uber laminare und 
turbulente Reibung. Z. ang. Math. 

Mech. 1 (4), 233{252,, 1921



Conclusions 

•  The Prandtl solution becomes singular at tDwhen BL detaches. 

•  The Navier-Stokes solution converges uniformly to  
    the Euler solution before BL detaches,  
    and ceases to converge after BL detaches. 

•  The detached BL has spatial scales as fine as Re-1, whic are 
     produced in different directions and not only parallel to the wall, 
     while the attached BL is parallel to the wall and scales as Re-1/2. 

•  The maximal vorticity of Navier-Stokes solution does not appear 
     at the same location of the Prandtl singularity. This contradicts 
     the picture of BL detachment seen as a local process coinciding 
     with Prandtl singularity.  



•  The velocity gradient du/dy at the wall scales like Re,   
which can be seen as the statistical signature of the  
existence of a boundary layer of thickness Re in the  
neighborhood of the wall.  
 
•  Hence, the log-law, which is obtained from experimental  
results, is consistent with the existence of a Kato layer. 
This connection can be made in a phenomenological  
way without invoking the Kolmogorov scale and cascade.  
 
•  Our results may help in investigating rigorous foundations  
to the phenomenological theory of von Karman. 
 

Conclusions 



Open questions 

-  Would Navier-Stokes solution looses smoothness after tD?  
- Would it converges to a weak singular dissipative solution of  
 Euler's equation analog to dissipative shocks in Burgers solution? 
- How can such a weak solution be approximated numerically?  

J. Leray, 1934
Sur le mouvement d’un fluide visqueux,

Acta Mathematica, 63

C. de Lellis and L. Székzlyhidi, 2010
Archives Rational Mechanics and  Analysis, 

195(1), 221-260

Numerical results suggest that a new asymptotic description  
of the flow beyond the breakdown of the Prandtl regime is possible.  
 Studying it might help to answer the following questions: 

   This might lead to a new resolution of d’Alembert’s paradox  
in terms of the production of weak singular dissipative structures 
due to the interaction of fully-developed turbulent flows with walls. 
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