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What is the inviscid limit of Navier-Stokes?

Navier-Stokes equations with
no-slip boundary conditions:

Re = VLv'! the Reynolds number

Same initial
conditions

Euler equations with

slip boundary conditions:
(Ju+(u-Viu=—Vp
V-u=0
\ulaﬂ = Oa

— u(f,X) R

u(0,-)=v

du+ (u-V)u=-Vp+ oV u f
] or
{V-u=90 .
uR (taX) Rv 0
\u|('_9Q =0, 11(0, ) =V ¢ €+

?

for

v =0
e =400
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Leonhard Euler Jean Le Rond d’Alembert
(1707-1783) (1717-1783)




1750: Euler’s problem

On 16 May 1748 Euler, president of the Prussian
Academy of Sciences, read the problem he proposed for
the Prize of Mathematics to be given in 1750 :

'Deduce from new principles, as simple as possible,
a theory to explain the resistance
exerted on a body moving in a fluid,
as a function of the body's velocity, shape and mass,
and of the fluid’s density and compressibility'.

Six mathematicians, including d’Alembert, sent a manuscript,
but Euler was not satisfied with them and decided
to postpone the prize to 1752.




1752: d’Alembert’s paradox

D’Alembert was upset and took back his manuscript of 1749,

translated it into French and published it in 1752.
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It seems to me that the theory, developed in all
possible rigor, gives, at least in several cases,

a strictly vanishing resistance, a singular paradox
which | leave to future geometers to elucidate.’




Ludwig Prandtl Toshio Kato
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1904: Prandtl’s boundary layer theory

« Prandtl (1904) predicted that the thickness of the boundary layer
in contact with a solid body (left) scales as Re 72,

the inverse square root of the Reynolds number Re,

« But Prandtl’s theory does not apply for separated flow regions
where the boundary layer detaches from the solid body (right).

Attached b.l. Detached b.l.

Prandtl, Uber Fliissigkeitsbewegung bei sehr kleiner Reibung,
Proceedings of ICM in Heidelberg, 484-491, 1904 |@ ®




1984: Kato’s theorem

Navier-Stokes solution converges towards the Euler solution,
if and only if, energy dissipation vanishes

AE,(0,T) =Re" f dt f dx[Vu(t,x)” —

Rc—’m
v — 0

and, if and only if, this happens in a boundary layer of
thickness inversely proportional to the Reynolds number Re

This requires using
smaller resolution

l to compute high

3
dx e 2

Reynolds flows

than predicted by
Prandtl's theory

ox x Re™!




Laboratory experiments

Vassilicos, Ann. Rev. Fluid Mech., 47, 2015
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Numerical experiments

Normalized energy dissipation > P
as v=>0, or Re > oo

,
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Both laboratory and numerical experiments
show that the dissipation rate of turbulent flows
becomes independent of the fluid viscosity for large Re
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Dissipation of energy in the inviscid limit

@ In an incompressible flow (p = 1)

2
Ccll_f:% u?:—l//w2:—21/2

o To dissipate energy, vorticity needs to be created and/or amplified, in

such a way that Z ~ v 1.

Possible vorticity distributions:
w ~ v~ Y2 over O(1) area,
w ~ vt over O(v) area.

with E energy, Z enstrophy,

v fluid kinematic viscosity,
w flow vorticity.
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Node 16320.root.0.1, frame 000001

-6.92 0.0748 7.07
I

Resolution
N=81922

N Time evolution
of vorticity
at the wall

computed on

N/ » 'BM Blue-Gene,
e A IDRIS, 2010
(100 Tflops)

Nguyen van yen,
M. F. and
Schneider,

2010 [OMO




Dipole crashing onto a plane walli

DNS
Resolution
N=81922




Dipole crashing onto a wall in 2D

: Navier-Stokes equations
ReSOIUt|On . ) i Nguyen van yen, M. F.
N=163842 with volume penalization i) Selfreislan

integrated using Fourier PRL, 106(18), 2011
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Dipole crashing onto a wall

Node 4412.ro0t.0.1, frame 000040
D N S -4.99e+0§_ -2.50e+03 0.00 2.50e+03 4.99e+03

Resolution £ | Re=8000
N=81922

Production of

vortices where

boundary layer
detaches

Nguyen van yen, M. F.
and Schneider,
PRL, 106(18), 2011




Energy dissipation

Energy dissipated
when the dipole crashes onto the wall
at increasing Reynolds numbers

AE
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2} —«— AER.(0,0.5)
—+— AEg(0, 0.35)

Early time :
t=0-0.5
———— | Later time:
¢ 1=0.35-0.5
t=0-0.35
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32. Dissipative structures

* QOur experiments suggest that the flow remains
dissipative in the inviscid limit,

 itis tempting to relate the observed structures
to energy dissipation, ‘u‘Z
* the kinetic energy density € = —— obeys:

_________________

,

de+u-V(e+ p)= VEAe — V‘Vu‘z

_________________

Local dissipation rate



Production of dissipative structures

Nguyen van yen, M. F.
and Schneider,
PRL, 106(18), 2011
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Local dissipation rate
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Local dissipation rate
for the dipole-wall collision
att=0.5

The strongest values of
the energy dissipation
rate is observed inside
the main vortex that
detached from the
boundary layer,

rather than inside the
boundary layer itself.
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Production of dissipative structures

I//w

energy dissipation rate
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Navier boundary conditions

a -2
The wall-normal velocity u, ‘ "
IS negligible,

The wall-parallel velocity u, is
much larger and such that

slip length

u, + a(Re, n, N)du, =0

This correspond to Navier 01000 2000 4000 8000
boundarv conditions with a slip R
length |y &



Comparison Navier-Stokes and Euler-Prandtl

Initial vorticity field: vortex quadrupole
w | .00 ~0.500 0.0E 0.500 1.00 w

<I’)’)Il’) 27_‘- :ax
No-slip wall | ; A

I I

i > !

i .

- [

. :

No-slip wall v
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¥i(,y) = Azyexp ( o~
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Prandtl equation coupled to Euler

Ansatz for the vorticity field as Re — oc:
w(z,y) =wg(z,y) + v Y %wp(z,v%y)+ wr(z,y)
Prandtl’s variable : yp,=y / v1/2

Oiwp + V-(qup) — ﬁgpwp

CUP(Q?,yp,O) =0

vp(z,yp,t) -—/ dyp/ dypwp (v, yp, )
Oy wp(,0,1) = —0;pe(z,0,1),

where PE is the pressure calculated from WE
which is the vorticity given by Euler equation

(OFOM



Prandtl solver

Artificial boundary condition: Oy,wp = 0 at Yp = 64
Spatial discretization: Fourier in X

and compact finite differences of 5th order in Y

Time discretization: low storage third order Runge-Kutta in t

Neumann boundary condition for vorticity:

Oypwp = —0ypp at Yp =0

where DE IS the pressure calculated from w5

To close the system we impose
d;.0p =0 at yp = 64
which is consistent with the rapid decay of wp

(oMo




Euler solver

@ Use mirror symmetry around y =0
to impose boundary condition.

@ Spatial discretization: Fourier
pseudo-spectral with
hyperdissipation, kpj.x = 682.

@ [ime discretization: third order low
storage Runge-Kutta, with
exponential propagator for the
viscous term.




Navier-Stokes solver

Fourier/compact finite differences (5th order)

- Similar to the one for the Prandtl equations, except that
non-uniform grids are used in the y direction.

- Two linear integral constraints are applied on vorticity to satisfy the
no-slip boundary conditions in y.

-Integrating factor for the viscous term and 3rd order Runge-Kutta
-for the advection term.

N, = 1024
N, = 385 - 449

(oMo



Computational grid

Before t=54 After t=54  when B.L. detachs
i | o from the wall
0.018F 1 0.018F g
;
0.016F 1 0.016H
0.014 0.014 . \
0.012 0.012
> 0.01 >~ 0.01E
» B.L.
0.008 0.008 S
=
0.006 0.006 5
1
0.004 0.004
0.002 0.002
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Comparison Navier-Stokes and Euler-Prandtl

Navier-Stokes solver

- Fourier in x and compact finite differences of 5th order
with non-uniform grid in vy.

- Third order Runge-Kutta in t.

- Periodic in x and no-slip boundary conditions in y.
Euler solver

- Fourier with hyperdissipation in x and .

- Third order Runge-Kutta in t.

- Mirror-symmetry around y=0 to impose boundary conditions.
Prandtl solver

- Second order finite differences in x and y.

- Second order semi-implicit Runge-Kutta in t.

- Neumann boundary condition at y=0 when inverting.
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Zoom of the boundary layer in Prandtl’s units
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Prandtl’s solution
no more exists

after t= 55.8
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Prandtl’s solution
Nno more exists
after t= 55.8
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Prandtl’s solution
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Prandtl’s solution
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Prandtl’s solution
Nno more exists
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no more exists
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Prandtl’s singularity

Prandtl equation has well-known finite time singularity

o |Oxwi1| and w1y blows up,
e wi remains bounded.

-3

8x10 | |

w— NX = 512

7H=—Nx = 1024

6 m— NX = 2048

This is observed ——Nx = 4096
in our computations .|
as expected, =4
3_
2_
for t —tp =~ 55.8 |

|

o
—
o

20 30 40 50 60




Prandtl solution’s blow-up at t,=55.8

maximum vorticty

According to Kato's theorem, and since w; remains bounded

: ; i ;
uniformly until tp, we expect that u, —¥ uniformly on [0, tp].
v—
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Vorticity along the wall at t=50 < t,

30

Euler-Prandtl solution
compared to
Navier-Stokes solution

0.65 0.7
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Vorticity along the wall at t=54 < t,

30

Euler-Prandt] -----
20r Navier-Stokes —

0.I65 0.7
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= S\ / Built-in of a recirculation bubble
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Vorticity along the wall at t=55 < t,

30 . .
Euler-Prandtl -----

-0l Navier-Stokes —
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Vorticity along the wall at t=55.3 < t;

—8—Re=7692
—&— Re = 15384
—A&— Re = 30769
—w— Re = 61538
—4—Re = 123075
- — — Prandil |

I I I I
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X
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Spectrum of the boundary vorticity

ey t=54 _ t=55.3 <t,= 55.8
wavepacket

10° k 102 L

) /X ,/ \ \_bump for N-S
10" O\ 107 | (s

s %W ' AN k-3/2 for

2 || —e—Re =7692
—m—Re = 15384
—&—Re = 30769

boundary enstrophy spectrum
o

10 {—e—Re = 7692 |'
—=—Re = 15384
—A—Re = 30769

\
\
10~ i —v—Re = 61538 \ 10° H —v—Re = 61538
—4—Re = 123075 § —4—Re = 123075
¢ Prandtl \ ol Prandtl
10- 1 1 rcereryl 1 I ool 1l il AT | 10- T
10° 10' 10° 10* 10° 10' 102 10° 10*
wavenumber wavenumber

The Prandtl’s solution behaves as k32 for large k, consistent
with the build-up of a jump singularity of vorticity along the wall,
while Navier-Stokes develops a bump which spread in k with Re.
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Vorticity along the wall at t=57 > t;

vorticity

30 ; . :
Production of a wavepacket
20l when boundary layers detach
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Vorticity along the wall at t=57.5 > t;

Higher the Re,
more oscillations

w=0
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Scaling from

Re=7692 to 123075

Vorticity max

Enstrophy
10° : : 10° :
— — — Prandtl {t = 53) - = = Prandtl (t = 53)
—®—Navier—Stokes (t = 53) t> tg 1 —e—Navier—Stokes (t = 53) t>t
s | —a— Navier-Stokes (t = 569) __,-;:'R"e —a— Navier—Stokes (t = 56.9) D
z T 1 ~Re
k%) Re
§ - = . E /"".
g 10 s B ol S .g 10 Re'? g -:-;-""'£—:_
N t <ty i
~Re1/2 - Tt <ty
: -l ~Re1/2
10~ , , , 2 , ; i
7692 15384 30769 61538 12307 107692 15384 30769 61538 123075
Reynolds number Reynolds number

We observe Prandtl’s scaling in Re'? before t;~ 55.8
and Kato’s scaling in Re after.
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What about the von Karman log law?

In turbulent boundary layers the mean velocity profile satisfies

U(y)) ~ — log<&>
U

N Kkarman v
T — 14 d_y
is the friction velocity \ v=0

This shows that both the bulk velocity and U - have the same
scaling with Re (up to a logarithmic factor). This can be seen as a

statistical signature of a boundary layer thickness Re-', which is
consistentdp some sense with the existence of a Kato layer.

the so called log law, where




Conclusions

« The Prandtl solution becomes singular at tywhen BL detaches.

 The Navier-Stokes solution converges uniformly to
the Euler solution before BL detaches

and ceases to converge after BL detaches.

« The BL detachment involves spatial scales as fine as Re™’
produced in different directions, not only parallel to the wall,
while attached BL is parallel to the wall and scales as Re"~.

« The maximal vorticity of Navier-Stokes solution does not appear
at the same location of the Prandtl singularity. This contradicts
the picture of BL detachment seen as a local process coinciding

with Prandtl singularity.
(@O




Conclusions

* In regions with reversed flow near the wall, the width
of the unstable wavenumber range scales like Re'?,
while the amplitude of vorticity continues to scale as Re'?
due to the presence of a Prandtl boundary layer.

* As soon as the buildup of the Prandtl singularity sufficiently
excites those wavenumbers, their superposition induces a
Re scaling for the amplitude of vorticity.

[©MO)



Conclusions

* By introducing nonlinear Rayleigh-Tollmien-Schlichting waves,
followed by roll-up and the injection of a dissipative structure
into the bulk flow. However, an essential point to keep in mind
Is that the phase of these waves is very sensitive to Reynolds.

* In the linear phase, the thickness of the wall-normal sublayer
scales like Re?3, but when the instability becomes nonlinear,
vorticity transport induces excitation of scales as fine as Re,
leading to dissipation. The process of detachment is thus
intricately linked to the occurrence of dissipation.

[0



Conclusions

* The velocity gradient du/dy at the wall scales like Re

up to a logarithmic factor, which can be seen as the
statistical signature of the existence of a boundary layer

of thickness Re in the neighborhood of the wall.

Hence, we see that the log-law, as an experimental result,

IS consistent in some sense with the existence of a Kato layer.

* This connection can be made in a phenomenological way
without invoking the Kolmogorov scale and cascade. Our
results may help in investigating rigorous foundations

to the phenomenological theory of von Karman.

[©MO



Open questions

Numerical results suggest that a new asymptotic description
of the flow beyond the breakdown of the Prandtl regime is possible.

Studying it might help to answer the following questions:

- Would Navier-Stokes solution looses smoothness after t;?
-Would it converges to a weak singular dissipative solution of

Euler's equation analog to dissipative shocks in Burgers solution?
- How can such a weak solution be approximated numerically?

This might lead to a new resolution of d’Alembert’s paradox

in terms of the production of weak singular dissipative structures
due to the interaction of fully-developed turbulent flows with walls.
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