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What is the inviscid limit of Navier-Stokes? 
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1904: Prandtl’s boundary layer theory 
•  Hypothesis: the fluid viscosity only plays a role in boundary 

layers in contact with no-slip walls, without any effect elsewhere. 
•  Prandtl (1904) predicted that the thickness of the viscous 

boundary layer scales as Re-1/2, Re  being the Reynolds number.  
•  But Prandtl’s theory does not apply to separated flow regions 

where the boundary layer detaches from the solid body. 
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1984: Kato’s theorem 
Navier-Stokes solution converges towards the Euler solution, 

if and only if, energy dissipation vanishes 

and, if and only if, this happens in a boundary layer of 
thickness inversely proportional to the Reynolds number Re 

⌫ ! 0

This requires using 
smaller resolution 
to compute high 
Reynolds flows 

than predicted by 
Prandtl’s theory 

Kato, 1984, Remarks on zero 
viscosity limit for non stationary 

Navier-Stokes flows with boundary, 
MSRI Berkeley
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Laboratory experiments    

Fully-developed turbulence Transition 
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Numerical experiments   

Kaneda et al., 2003
Phys. Fluids, 12, 21-24
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    Both laboratory and  numerical experiments 
show that the dissipation rate  of turbulent flows 

   becomes independent of the fluid viscosity for large Re 
       
   

    



Resolution 
N=163842 

Dipole crashing onto a wall in 2D 

t=0.4 t=0.3 t=0.5 

Nguyen van yen, M. F. 
and Schneider,

PRL, 106(18), 2011

Navier-Stokes equations 
with volume penalization 
integrated using Fourier  
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Production of dissipative structures 
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Initial vorticity field: vortex quadrupole 
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Comparison Navier-Stokes and Euler-Prandtl 
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Prandtl equation coupled to Euler  

where        is the pressure calculated from 
  which is the vorticity given by Euler equation    

pE !E

. 

Prandtl’s variable : yP = y / ν1/2 



Numerical solvers 

Navier-Stokes solver 
- Fourier in x and compact finite differences of 5th order  
with non-uniform grid in y. 
- Third order Runge-Kutta in t. 
- Periodic in x and no-slip boundary conditions in y. 
Euler solver 
- Fourier with hyperdissipation in x and y. 
- Third order Runge-Kutta in t. 
- Mirror-symmetry around y=0. 
Prandtl solver 
- Second order finite differences in x and y. 
- Second order semi-implicit Runge-Kutta in t. 
- Neumann boundary condition for vorticity at y=0.  



Computational grid 

B.L. 

Before t=54 After t=54 when B.L. detaches 
from the wall 



Euler and Prandtl  Navier-Stokes 

Zoom of the boundary layer in Prandtl’s variable 

y  

x  

yP = y / ν1/2 

x  



Euler and Prandtl  Navier-Stokes 
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Navier-Stokes Euler   

Prandtl’s solution 
  no more exists 

after t= 55.8 
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Prandtl’s singularity 

L. L. van Dommelen 
and S. F. Shen., 1980
J. Comp. Phys., 38(2)

 

tD= 55.8 



Scaling  from Re=7692 to 123075 

Vorticity max Enstrophy 

We observe Prandtl’s scaling in Re1/2 before tD~ 55.8 
                 and Kato’s scaling in Re after. 
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Conclusions 

•  The Prandtl solution becomes singular at tDwhen BL detaches. 

•  The Navier-Stokes solution converges uniformly to  
    the Euler solution before BL detaches  
    and ceases to converge after BL detaches. 

•  The BL detachment involves spatial scales as fine as Re-1 
     produced in different directions, not only parallel to the wall, 
     while attached BL is parallel to the wall and scales as Re-1/2. 

•  The maximal vorticity of Navier-Stokes solution does not appear 
     at the same location of the Prandtl singularity. This contradicts 
     the picture of BL detachment seen as a local process coinciding 
     with Prandtl singularity.  



Open questions 

-  Would Navier-Stokes solution looses smoothness after tD?  
- Would it converges to a weak singular dissipative solution of  
 Euler's equation analog to dissipative shocks in Burgers solution? 
- How can such a weak solution be approximated numerically?  

J. Leray, 1934
Sur le mouvement d’un fluide visqueux,

Acta Mathematica, 63

C. de Lellis and L. Székzlyhidi, 2010
Archives Rational Mechanics and  Analysis, 

195(1), 221-260

Numerical results suggest that a new asymptotic description  
of the flow beyond the breakdown of the Prandtl regime is possible.  
 Studying it might help to answer the following questions: 

   This might lead to a new resolution of d’Alembert’s paradox  
in terms of the production of weak singular dissipative structures 
due to the interaction of fully-developed turbulent flows with walls. 
 



CUP’s shocking policy for Open Access ! 

To publish in Open Access  
in Journal of Fluid Mechanics (JFM) 

CUP requires 2200 € for APCs 
plus copyright transfer for free 

while JFM is sold by subscription ! 



Open Access copyright transfer form 



Open Access copyright transfer form 



We pay 2200 € and loose our copyright ! 



http:dissem.in  

Dissem.in crawls about 
100 millions d’articles 






